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PSEUDO-LABELLING BASED
BOOTSTRAPPING FOR SEMI SUPERVISED
LEARNING

BACKGROUND

[0001] Machine learning models can be trained to catego-
rize entities such as objects in images. Training these
machine learning models can require data with labels iden-
tifying the entities’ category. Sourcing labeled data can be
problematic because a large number of data may be needed
to train a model, and manually labeling entities can be time
consuming and expensive. Accordingly, improvements to
training machine learning models are desirable.

BRIEF SUMMARY

[0002] In one general aspect, techniques may include
receiving, by a computing device, an accuracy target for one
or more machine learning models. The techniques may also
include training, by the computing device, the one or more
machine learning models on a labeled training set of data.
The techniques may furthermore include until the accuracy
of the one or more machine learning models satisfies the
accuracy target: sampling, by the computing device, a set of
unlabeled data to obtain a random training set of unlabeled
data; labeling, by the computing device and using the one or
more machine learning models, the random training set of
unlabeled data to produce a pseudo labeled training set;
correcting, by the computing device, the labels on a random
subset of the pseudo labeled training set; training, by the
computing device, the one or more machine learning models
on the labeled training set, the corrected random subset, and
the pseudo labeled training set; and evaluating, by the
computing device, the accuracy of the one or more machine
learning models using an evaluation set of labeled data. The
techniques may include deploying, by the computing device,
the one or more machine learning models based at least in
part on the accuracy of the one or more machine learning
models satisfying the accuracy target based at least on the
evaluating. Other embodiments of these techniques include
corresponding methods, computer systems, apparatus, and
computer programs recorded on one or more computer
storage devices, each configured to perform the actions of
the techniques.

[0003] Implementations may include one or more of the
following features. Techniques where the accuracy target
may include a threshold determined based at least in part on
a performance of the one or more machine learning models
in classifying unlabeled data. Techniques where the labeling
may include ensemble learning with multiple machine learn-
ing models. Techniques where ensemble learning may
include at least one of bagging, stacking, or boosting.
Techniques where the labeling may include test time aug-
mentation with at least one of vertical/horizontal flipping,
blurring, random cropping, or histogram equalization. Tech-
niques where the evaluating further may include: identifying
a performance deficiency where the accuracy of the one or
more models in classifying a class of unlabeled data is below
a threshold; and augmenting the random subset of the
pseudo labeled training set with a targeted subset having
data from the pseudo labeled training set that are labeled
with the class. Techniques where the labeled training set of
labeled data is smaller than the pseudo labeled training set
so that a small amount of labeled data can be used to create
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a larger pseudo labeled training set. Implementations of the
described techniques may include hardware, a method or
process, or a computer tangible medium.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a simplified diagram of bagging accord-
ing to at least one embodiment.

[0005] FIG. 2 is a simplified diagram of boosting accord-
ing to at least one embodiment.

[0006] FIG. 3 shows a simplified diagram of stacking
according to at least one embodiment.

[0007] FIG. 4 shows a simplified diagram of a system for
training a machine learning model according to at least one
embodiment.

[0008] FIG. 5 shows a simplified diagram and flow chart
for training a machine learning model according to at least
one embodiment.

[0009] FIG. 6 depicts a machine learning model according
to at least one embodiment.

[0010] FIG. 7A shows an example machine learning
model of a neural network to at least one embodiment.
[0011] FIG. 7B shows an example machine learning
model of a support vector machine (SVM) to at least one
embodiment.

[0012] FIG. 8 shows a technique for training a machine
learning model according to at least one embodiment.
[0013] FIG. 9 is a block diagram illustrating one pattern
for implementing a cloud infrastructure as a service system,
according to at least one embodiment.

[0014] FIG. 10 is a block diagram illustrating another
pattern for implementing a cloud infrastructure as a service
system, according to at least one embodiment.

[0015] FIG. 11 is a block diagram illustrating another
pattern for implementing a cloud infrastructure as a service
system, according to at least one embodiment.

[0016] FIG. 12 is a block diagram illustrating another
pattern for implementing a cloud infrastructure as a service
system, according to at least one embodiment.

[0017] FIG. 13 is a block diagram illustrating an example
computer system, according to at least one embodiment.

DETAILED DESCRIPTION

[0018] In the following description, various embodiments
will be described. For purposes of explanation, specific
configurations and details are set forth in order to provide a
thorough understanding of the embodiments. However, it
will also be apparent to one skilled in the art that the
embodiments may be practiced without the specific details.
Furthermore, well-known features may be omitted or sim-
plified in order not to obscure the embodiment being
described.

[0019] Embodiments of the present disclosure provide
techniques for generating pseudo-labeled datasets for train-
ing machine learning models. These datasets can be labeled
using ensemble learning where multiple individual models
are combined to produce an aggregate model. A group of
individual models can be trained on a small, labeled dataset,
and once trained, the individual model can be combined to
produce an ensemble model. This ensemble model can be
used to pseudo-label a subset from a larger unlabeled
dataset. This subset can be produced via bootstrapping, and,
in addition, the labels of a sample from the pseudo-labeled
subset can be corrected by a human. The ensembled model
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can then be trained on the labeled data, the pseudo-labeled
dataset, and the corrected sample. Once trained, the
ensembled model can be evaluated. This technique is
repeated to recursively train the ensembled model until the
model’s accuracy is above an accuracy threshold.

[0020] Machine learning models can be trained to classify
entities using semi-supervised learning techniques. The enti-
ties can be objects or persons depicted in an image and the
classification can be a label that is assigned to the entity. This
classification task has two parts: identifying objects in the
image and assigning a label to the objects. In supervised
learning, the models can be trained with labeled data. This
data consists of images where a human has identified entities
and assigned classifications. However, models may require
large number of labeled images and it may not be practical
or possible to manually label sufficient images to produce a
training data set. In semi-supervised learning, an initial
labeled training data set is used to train a model which can
then assign classifications to unlabeled data (e.g., unlabeled
images). Training data with labels that were assigned by a
model are known as pseudo-labeled training data. Semi-
supervised learning techniques that use pseudo-labeled data
can train a model with significantly fewer labeled training
samples (e.g., data that was labeled by a human) than would
be required for supervised learning.

[0021] Sourcing appropriate datasets can be challenging
because of the amount of data required to train a model.
Even obtaining sufficient unlabeled data can be problematic,
but this difficulty can be mitigated using bootstrapping
techniques. With bootstrapping, the unlabeled data can be
obtained as subsets from a larger dataset. In bootstrapping,
a dataset is randomly sampled to produce a subset. This
random sampling process is repeated so that a single dataset
can be used to create a large number of simulated samples
(e.g., subsets). Each subset can be sampled from the same
dataset and the data corresponding to a subset may not be
removed between samples.

[0022] Ideally, a machine learning model that is trained on
a particular dataset can learn to properly classify both the
training dataset and new data. However, models that perform
well on training data may make errors when encountering
new datasets, and this can be particularly true for models
trained on small datasets. These classification errors can be
caused by variance or bias. Variance is when the model has
overfit the training data and the model has learned the
training data’s characteristics too closely. Such a model can
classify the training data well, but the model may struggle to
classify new datasets. Bias is when the model has underfit
the training data and the model has not learned the correct
lessons from training. Biased models may classify training
data with lower accuracy than a model with high variance,
but a biased model may be better at classifying new datasets
than a model with high variance. Bias and variance are
inversely correlated with bias increasing as variance
decreases while variance increases as bias decreases.
[0023] The bias or variance of an individual model can be
corrected using ensemble learning techniques. Ensemble
learning involves combining individual machine learning
models into an aggregated model. The individual models can
be aggregated using different techniques that can compen-
sate for the limitations of the different models, and the
aggregated model may be more accurate than any of its
constituent models. For instance, some ensemble learning
techniques may produce an aggregate model that has higher
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variance than its constituent models. Alternatively, some
ensemble learning techniques can lead to an aggregate
model that has higher bias than its constituent parts.
[0024] Combining the models to produce an aggregate
model can mean combining the output of individual models
or combining the actual models to produce a meta-model.
For example, bagging is a technique where the outputs of
several high variance models are averaged to make predic-
tions with lower variance than the predictions from the
individual models (e.g., constituent models). Boosting is an
ensemble learning technique where the individual models
are trained sequentially and combined to produce a meta-
model. The datasets are updated after each model is trained
so that the next model in the sequence pays more attention
to the data that the previous model struggled to classify.
Boosting can produce an aggregate model with less bias than
the constituent models. Also, another ensemble learning
technique, stacking, involves combining several models to
produce a meta-model with less bias than the individual
models.

[0025] An ensembled model can be used to assign pseudo-
labels to an unlabeled dataset. The robustness of the pseudo-
labels can be improved using various techniques. For
example, the images from the unlabeled dataset can be
modified and the prediction for each modified image can be
averaged. This process, called test time augmentation, takes
the average of each prediction as the classification for the
unmodified image mitigating the possibility that the model
overfits the data. In an additional example, duplicate detec-
tions of objects in an image can be reduced using non-
maximum suppression where overlapping bounding boxes
(e.g., boxes surrounding a detected object that is assigned a
classification) are removed. Non-maximum suppression can
be class dependent, where only bounding boxes from the
same class are removed, or class agnostic where overlapping
bounding boxes are removed regardless of class. In another
example, a subsample of the pseudo-labeled samples can be
evaluated by a human and any incorrect classifications can
be corrected. In another example, the training data can be
supplemented with additional labeled data for a particular
class that is underperforming (e.g., with an accuracy score
below a threshold).

[0026] These techniques can be combined to train a model
using relatively small datasets. In an illustrative example, a
customer wants a model that can identify fire hydrants in
images. The customer provides a relatively small dataset of
images with labeled fire hydrants, and this dataset is used to
train a model to identify fire hydrants in unlabeled images.
After this training, the model is ensembled (e.g., combined)
with other previously trained models and this ensembled
model is used to pseudo label a sample from a large
unlabeled dataset by identifying fire hydrants in the unla-
beled sample. A percentage (e.g., 3%-5%) of this pseudo
labeled sample can be corrected by a human and a model can
be trained on the labeled data, the pseudo-labeled sample,
and the corrected pseudo labeled data. The performance of
the model can be evaluated and, if the model exceeds an
accuracy threshold, the model can be deployed.

[0027] FIG. 1 is a simplified diagram 100 of bagging
according to at least one embodiment. A training dataset 105
can be sampled to produce one or more subsets such as
subset 1 110, subset 2 115, subset 3 120, and subset N 125.
These samples can be separate individual samples that are
drawn from the dataset 105 or one or more of the samples
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may be repeated. The samples can be generated using
bootstrapping techniques or any other sampling technique
that results in a sample that is representative of the dataset.
Data in each sample may be distinct with each sample
including separate data or the data between samples may
overlap in part. Each data set can be used to train a model,
and, for example, subset 1 110 can be used to train model 1
130, subset 2 115 can be used to train model 2 135, subset
3 120 can be used to train model 3 140, and subset N can be
used to train model N 145. The subsets may be generated
from dataset 105 using bootstrapping techniques.

[0028] In bagging, the models can be ensembled by com-
bining the output of each model to produce an aggregated
prediction 150. The output of a model can be a probability
that an area in an image contains an entity that should be
assigned a classification (e.g., a car, a boat, a person, a dog,
a crosswalk, etc.). An entity can be assigned one or more
different classifications, and, for example, a car may be
classified as a vehicle and as a car. In some embodiments,
each type of classification that can be assigned to an entity
can be a class. The probabilities output from each model can
be averaged and the averaged probability can be the output
from the ensembled model. The averaged output can have a
smaller variance than the output from the individual models.

[0029] FIG. 2 is a simplified diagram 200 of boosting
according to at least one embodiment. In boosting, weights
are assigned to data in a training dataset and models are
trained sequentially on the dataset. Between training ses-
sions, the weights are increased for data that was not
accurately classified in the previous training session so that
difficult to classify data receives more attention in the next
training session. For example, model 1 205 can be trained on
data sampled from dataset 210. During training, model 1 205
can classify the data from dataset 210 and the data can be
divided into incorrectly classified data 215 and correctly
classified data 220. This data can be provided to the subse-
quent model (e.g., model 2 225). The weights for the
incorrectly classified data 215 can be increased so that
model 2 225 gives greater attention to the incorrectly
classified data 215 during the next round of training.

[0030] Model 2 225 can classify the data used to train
model 1 205 (e.g., incorrectly classified data 215 and cor-
rectly classified data 220). After model 2 225 is trained, the
data can be sorted into incorrectly classified data 230 and
correctly classified data 235. For example, the data can be
manually checked and sorted into the correct and incorrect
categories. After the data has been separated, the weights for
the incorrectly classified data 230 and the correctly classified
data 235 can be adjusted. Model 2 225 may classify data
with a different accuracy than model 1 205 and incorrectly
classified data 215 and incorrectly classified data 230 may
contain different data. Accordingly, the weights for correctly
classified data 235 and incorrectly classified data 230 may
need to be adjusted to reflect the performance of model 2
225.

[0031] The training and adjustment process can proceed
for any number of models. Model N 240 can be the last
model trained during the technique shown in diagram 200,
and model N 240 can be combined with model 1 205 and
model 2 225 to produce a trained model 245. Each model
that is included in trained model 245 can be assigned a
weight based on the model’s accuracy in classifying the
data. This weighting procedure can allow more accurate
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models to have more influence in the trained model 245
while less accurate models can have less influence.

[0032] FIG. 3 shows a simplified diagram 300 of stacking
according to at least one embodiment. Stacking involves
training a stacking model 305 on the outputs of other
models. For example, dataset 310 can be divided into
subsets such as subset 1 315, subset 2 320, subset 3 325, and
subset N 330. While four subsets, and models, are shown,
stacking can be performed with any number of subsets or
models. The subsets can be created from dataset 310 using
bootstrapping techniques and the subsets may contain the
same data, overlapping data, or separate data.

[0033] The subsets can be used to train models. For
instance, subset 1 315 can be used to train model 1 335,
subset 2 320 can be used to train model 2 340, subset 3 325
can be used to train model 3 345, and subset N 330 can be
used to train model N 350. The predictions 3550 output from
these models is then used, along with data from dataset 310,
to train the stacking model 305. The machine learning
models can be different types of models. For instance, model
1 335, model 2 340, model 3 345, and model N 350 can each
be different model types.

[0034] FIG. 4 shows a simplified diagram 400 of a system
for training a machine learning model according to at least
one embodiment. Training data can be stored in an image
directory 405. The image data can include images that are
provided via image application programming interfaces
(APIs) 410. This training data can include labeled training
data 415 or unlabeled training data 420. Unlabeled training
data 420 can consist of images without any identified entities
such as a person or object that is visible in the image.
Labeled training data can be any image with an identified
entity in the image. The identified entity can be marked with
a graphic surrounding the identified object and a label with
the classification for the entity. The graphic surrounding the
object can be a bounding box (e.g., a rectangle or square
around the object). The image directory can be controlled or
edited via the console 425. A user can use the console 425
to delete images, label images, generate a training set of
images, generate a validation set of images, and the like.
[0035] The model system 430 can be used to train a model
using the images in the image directory 405. The model
system 430 can be controlled using the console 425, and, for
instance, the type of model being trained, and the techniques
used to train the model, can be provided to the model system
430 using the console 425. The pseudo-labeling system 435
in model system 430 can be used to assign labels to
unlabeled training data 420 in image directory 405. Console
425 can be used to select one or more models that are used
to assign pseudo-labels, the number of images that are to be
pseudo-labeled, and the specific label categories that are to
be assigned to the images.

[0036] The model training system 440 can train a model
using data from the image directory 405. The console 425
can be used to control training by the model training system
440 by identifying the one or more models that are to be
trained, and the training techniques that are used to train the
one or more models. In addition, the console 425 can be used
to specify characteristics of the training data such as the size
of the training dataset, the validation dataset, and the test
dataset. During or after the training, the model’s perfor-
mance can be evaluated using the model evaluation system
445 using validation datasets and training datasets. Results
from this training can be stored in an evaluation directory



US 2025/0068983 Al

450. Image directory 405 and evaluation directory 450 are
shown in diagram 400 as a single directory, but multiple
directories are contemplated in various embodiments.

[0037] FIG. 5 shows a simplified diagram 500 and flow
chart 501 for training a machine learning model according to
at least one embodiment. This technique is illustrated as a
logical flow diagram, each operation of which can be
implemented in hardware, computer instructions, or a com-
bination thereof. In the context of computer instructions, the
operations may represent computer-executable instructions
stored on one or more computer-readable storage media that,
when executed by one or more processors, perform the
recited operations. Generally, computer-executable instruc-
tions include routines, programs, objects, components, data
structures and the like that perform particular functions or
implement particular data types. The orders in which the
operations are described are not intended to be construed as
a limitation, and any number of the described operations can
be combined in any order and/or in parallel to implement the
processes or the method.

[0038] Turning to flow chart 501 in greater detail, at block
505 one or more models can be trained on labeled data 545.
The labeled data can include an identified entity 550, a
bounding box 555 surrounding the entity, and a label 560.
This labeled data 545 can be divided into training data, test
data and validation data. During training, the model is
trained on the test data and evaluated on the validation
dataset. Once the model’s performance on the validation
dataset is above a threshold, the training can end, and the
model’s performance can be tested on the test dataset to
determine the model’s ability to classify data that has not
been presented to the model during training. If the model’s
performance (e.g., classification accuracy) is above a thresh-
old, the technique can proceed to block 510. If the model’s
performance is below a threshold, the model may be
retrained or a different model may be trained until a model
that satisfies the performance threshold is trained.

[0039] At block 510, unlabeled training data 565 can be
obtained. The unlabeled training data 565 can include
images with entities 550, but the unlabeled training data 565
may not include bounding boxes 555 or labels 560. In some
embodiments, the unlabeled training data 565 can include
labels for categories that are not the subject of the current
training. For instance, a model may be undergoing training
to produce a model that can label cats in images and the
unlabeled training data may include labels for trees but no
cat labels.

[0040] At block 515, a subset of the unlabeled training
data 565 from block 510 can be pseudo-labeled using the
one or more machine learning models that were trained at
block 505, or the one or more models that were trained at
block 525. Pseudo-labeling can be when a model assigns
labels to entities 550 and pseudo-labeling can produce
pseudo-labeled data 570. A model can pseudo-label an entity
550 by identifying the entity, placing a bounding box 555
around the entity and classitying the entity with an inaccu-
rate pseudo-label 575 or an accurate pseudo-label 580.

[0041] At block 520, a random subset of the pseudo-
labeled training data from block 515 can be revised to
produce corrected pseudo-labeled data 585. Corrected
pseudo-labeled data 585 can be data that was incorrectly
labeled by a machine learning model but the inaccurate
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pseudo-label 575 was manually changed to an accurate
pseudo-label. The random subset can include some or all of
the pseudo-labeled data.

[0042] Atblock 525, the one or more models from 505 can
be trained on at least the corrected pseudo-labeled training
data from 520. The one or more models trained at 525 can
include some or all of the models from 505 as well as one
or more new models in addition to some or all of the models
from 505. In some embodiments, entirely new models are
trained at 525 without any of the models from 505. The
models trained at 525 can be trained on one or more of
labeled data 545, unlabeled training data 565, pseudo-
labeled data 570, and corrected pseudo-labeled data 585.
[0043] At block 530, the models trained at 525 can be
evaluated on evaluation data. The evaluation data can be
labeled data 545 that was not used to train the models at 525.
The models can be used to classify the evaluation data and
the classifications assigned by the models can be compared
to the labels 560 to determine the accuracy of the trained
models (e.g., model accuracy).

[0044] At block 535, whether the model satisfies an accu-
racy target can be determined. The accuracy target can be
based on the model’s performance on the evaluation data at
525. The accuracy targets can be based on one or more
accuracy metrics including classification accuracy, logarith-
mic loss, confusion matrix, area under curve, F1 score, mean
absolute error, mean squared error, or any other accuracy
metrics. If the model satisfies the accuracy target (e.g., the
model’s classification accuracy is above 85%), the one or
more models evaluated at 530 are ready to be deployed and
the technique illustrated by flow chart 501 can proceed to
block 540. If the one or more models evaluated at 530 do not
satisfy the accuracy target, the technique illustrated by flow
chart 501 can return to block 515 and the models can be used
to pseudo label unlabeled training data.

[0045] An entire set of training samples can be split into
a training set and a test set. The test set is not used during
the training and will be used later to evaluate if the model,
developed only with the training set, makes accurate pre-
dictions. If the model accurately categorizes the validation
set, the model can be extended to categorize new data sets.
Once the model is trained, a new input vector (e.g., a new
service) can be classified, (e.g., deployment characteristics
can be suggested for the new service). At block 540, the one
or more models that satisfy the accuracy target at 535 can be
deployed.

[0046] FIG. 6 depicts a machine learning model according
to the embodiments of the present invention. Training vec-
tors 605 are shown with service properties 610 and a known
classification 615. As examples, a service can be a machine
learning model that can be deployed to a cloud network.
Service properties 610 can include various fields. For ease of
illustration, only two training vectors are shown, but the
number of training vectors may be much larger, e.g., 10, 60,
100, 1,000, 10,000, 100,000, or more. Training vectors could
be made for different services, the same service over differ-
ent time periods.

[0047] Service properties 610 have property fields that can
correspond to properties of a machine learning model or
cloud service and the skilled person will appreciate the
various ways that such services or models can be configured.
Known classifications 615 include hardware or software
characteristics such as the number of nodes, the number of
central processing unit (CPU) cores, the number of graphical
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processing units (GPUs), the number of CPUs, the type of
CPUs, the type of CPUs, the amount of memory, and the
like. The classification can have arbitrary support (e.g., a real
number) or be an element of a small finite set. The classi-
fication can be ordinal, and thus the support can be provided
as an integer. Accordingly, a classification can be categori-
cal, ordinal, or real, and can relate to a single measurement
or multiple measurements and may be high dimensional.
[0048] Training vectors 605 can be used by a learning
module 625 to perform training 620. Learning module 625
can optimize parameters of a model 635 such that a quality
metric (e.g., accuracy of model 635) is achieved with one or
more specified criteria. The accuracy may be measured by
comparing known classifications 615 to predicted classifi-
cations. Parameters of model 635 can be iteratively varied to
increase accuracy. Determining a quality metric can be
implemented for any arbitrary function including the set of
all risk, loss, utility, and decision functions.

[0049] In some embodiments of training, a gradient may
be determined for how varying the parameters affects a cost
function, which can provide a measure of how accurate the
current state of the machine learning model is. The gradient
can be used in conjunction with a learning step (e.g., a
measure of how much the parameters of the model should be
updated for a given time step of the optimization process).
The parameters (which can include weights, matrix trans-
formations, and probability distributions) can thus be opti-
mized to provide an optimal value of the cost function,
which can be measured as being above or below a threshold
(i.e., exceeds a threshold) or that the cost function does not
change significantly for several time steps, as examples. In
other embodiments, training can be implemented with meth-
ods that do not require a hessian or gradient calculation, such
as dynamic programming or evolutionary algorithms.
[0050] A prediction stage 630 can provide a predicted
entity classification 655 for a new entity’s entity signature
vector 640 based on new service properties 645. The new
service properties can be of a similar type as service prop-
erties 610. If new service properties are of a different type,
a transformation can be performed on the data to obtain data
in a similar format as service properties 610. Ideally, pre-
dicted service classification 1055 corresponds to the true
service classification for input vector 640.

[0051] Examples of machine learning models include
deep learning models, neural networks (e.g., deep learning
neural networks), kernel-based regressions, adaptive basis
regression or classification, Bayesian methods, ensemble
methods, logistic regression and extensions, Gaussian pro-
cesses, support vector machines (SVMs), a probabilistic
model, and a probabilistic graphical model. Embodiments
using neural networks can employ using wide and tensorized
deep architectures, convolutional layers, dropout, various
neural activations, and regularization steps.

[0052] FIG. 7A shows an example machine learning
model of a neural network. As an example, model 735 can
be a neural network that comprises a number of neurons
(e.g., Adaptive basis functions) organized in layers. For
example, neuron 705 can be part of layer 710. The neurons
can be connected by edges between neurons. For example,
neuron 705 can be connected to neuron 715 by edge 720. A
neuron can be connected to any number of different neurons
in any number of layers. For instance, neuron 705 can be
connected to neuron 725 by edge 730 in addition to being
connected to neuron 715.
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[0053] The training of the neural network can iteratively
search for the best configuration of the parameter of the
neural network for feature recognition and classification
performance. Various numbers of layers and nodes may be
used. A person with skills in the art can easily recognize
variations in a neural network design and design of other
machine learning models.

[0054] FIG. 7B shows an example machine learning
model of a support vector machine (SVM). As another
example, model 735 can be a support vector machine.
Features can be treated as coordinates in a coordinate space.
Samples of training data points (e.g., multidimensional data
points composed of the measured data). The training data
points are distributed in the space, and the support vector
machine can identify boundaries between the classifications.
For example point 735 and point 740 can be separated by
boundary 745.

[0055] FIG. 8 is diagram of a process 800 for training a
machine learning model according to at least one embodi-
ment. This process is illustrated as a logical flow diagram,
each operation of which can be implemented in hardware,
computer instructions, or a combination thereof. In the
context of computer instructions, the operations may repre-
sent computer-executable instructions stored on one or more
computer-readable storage media that, when executed by
one or more processors, perform the recited operations.
Generally, computer-executable instructions include rou-
tines, programs, objects, components, data structures and the
like that perform particular functions or implement particu-
lar data types. The orders in which the operations are
described are not intended to be construed as a limitation,
and any number of the described operations can be com-
bined in any order and/or in parallel to implement the
processes or the method.

[0056] Turning to process 800 in greater detail, at block
805, an accuracy target for the one or more machine learning
models can be received. The accuracy target can be a value
for an accuracy metric such as classification accuracy,
logarithmic loss, confusion matrix, area under curve, F1
score, mean absolute error, mean squared error, or any other
accuracy metrics. The accuracy target can be provided via
console 425.

[0057] At block 810, the one or more machine learning
models can be trained on a labeled training set of labeled
data. The labeled training set of labeled data can be labeled
training data 415 that is provided via image API(s) 410. The
labeled training data can include one or more identified
entities 550, at least one bounding box 555 surrounding each
entity, and at least one label 560 for each entity.

[0058] At block 815, a set of unlabeled data can be
sampled to obtain a random training set of unlabeled data.
Any combination of blocks 815-835, can be repeated until
the accuracy of the one or more machine learning models
satisfies the accuracy target. The unlabeled data can be
unlabeled data 565 and the unlabeled data can be sampled
with or without replacement. For example, the random
training set of unlabeled data can be sampled using boot-
strapping techniques. The random training set of unlabeled
data can be sampled randomly or using any applicable
sampling techniques that result in a training set of unlabeled
data that is representative of the unlabeled data.

[0059] At block 820, the random set of unlabeled data
from 815 can be labeled using the one or more machine
learning models to produce a pseudo-labeled training set.
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Pseudo labeled data can be data that was labeled by a
machine learning model. The model or models labeling data
at 820 can be models that were previously trained at 830.
One or more additional models can be used in addition to the
models that were previously trained at 830.

[0060] At block 825, the labels on a random subset of the
pseudo-labeled training data set can be corrected to produce
a corrected random subset of the pseudo-labeled training
data. The random subset of pseudo-labeled training data can
be selected using any sampling technique that can used to
create a sample that represents the subset of pseudo-labeled
training data. The random subset can be any proportion of
the pseudo-labeled training data set (e.g., 1%-10% of the
pseudo-labeled training data set).

[0061] In some embodiments, a random subsample of a
particular class of data can be corrected. For example, a
particular class of data (e.g., a datum having a particular
entity or type of entity in an image) may be difficult for a
model to classity, and the model may fail to meet accuracy
targets for this class of data. A random subsample of pseudo
labeled data from this class (e.g., data with model assigned
labels for cars) may be selected and corrected. Such correc-
tions can help mitigate the possibility that the model is
underperforming on this class of data because the pseudo-
labels for this class of data are inaccurate.

[0062] At block 830, the one or more machine learning
models can be trained. The models can be trained on one or
more of the labeled training data set, the corrected random
subset, or the pseudo-labeled training set. The machine
learning model can be a single model or multiple machine
learning models that are trained using ensemble learning
techniques such as stacking, boosting, or bagging. During
training, the training data can be altered using test time
augmentation techniques. Test time augmentation involves
randomly altering a datum during training of a model so that
the exact same datum is not shown to the model twice. For
instance, the image can be flipped, inverted, cropped,
blurred, or otherwise altered each time the image (e.g.,
datum) is presented to the model. The test time augmenta-
tion techniques can include vertical/horizontal flipping, blur-
ring, random cropping, or histogram equalization (e.g.,
changing the contrast of the images). During training, any
dataset can be randomly subsetted (e.g., produced or
manipulated by retrieving a subset) for training ensemble
models and parts of the ensemble models using for iterative
pseudo labeling of a large unlabeled data and concurrent
retraining of the models until an accuracy threshold has been
exceeded.

[0063] At block 835, the accuracy of the one or more
machine learning models can be evaluated using an evalu-
ation set of unlabeled data. The one or more machine
learning models can be evaluated for accuracy labeling all
classes of data, for accuracy in labeling one or more specific
classes of data, or for a combination thereof. If multiple
accuracy targets are used, the accuracy targets can be
different for each evaluated class. If the model satisfies the
one or more accuracy targets, the model can be deployed at
840. If the model does not satisfy the accuracy targets, the
technique can return to 820. In this way, a series of models
can be iteratively trained until accuracy targets are satisfied.
The accuracy target can be a threshold that is determined
based at least in part on a performance of the one or more
machine learning models in classifying unlabeled data.
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[0064] At block 840, the one or more machine learning
models can be deployed based at least in part on a deter-
mination at 835 that the one or more machine learning
models satisfies the accuracy target from 805. In some
embodiments, the model may need to satisfy multiple accu-
racy targets at 805 in order for the model to be deployed. The
decision to deploy the models can be based at least in part
on the evaluation at 835.

[0065] As noted above, infrastructure as a service (laaS) is
one particular type of cloud computing. laaS can be con-
figured to provide virtualized computing resources over a
public network (e.g., the Internet). In an IaaS model, a cloud
computing provider can host the infrastructure components
(e.g., servers, storage devices, network nodes (e.g., hard-
ware), deployment software, platform virtualization (e.g., a
hypervisor layer), or the like). In some cases, an laaS
provider may also supply a variety of services to accompany
those infrastructure components (example services include
billing software, monitoring software, logging software,
load balancing software, clustering software, etc.). Thus, as
these services may be policy-driven, laaS users may be able
to implement policies to drive load balancing to maintain
application availability and performance.

[0066] In some instances, laaS customers may access
resources and services through a wide area network (WAN),
such as the Internet, and can use the cloud provider’s
services to install the remaining elements of an application
stack. For example, the user can log in to the [aaS platform
to create virtual machines (VMs), install operating systems
(OSs) on each VM, deploy middleware such as databases,
create storage buckets for workloads and backups, and even
install enterprise software into that VM. Customers can then
use the provider’s services to perform various functions,
including balancing network traffic, troubleshooting appli-
cation issues, monitoring performance, managing disaster
recovery, etc.

[0067] In most cases, a cloud computing model will
require the participation of a cloud provider. The cloud
provider may, but need not be, a third-party service that
specializes in providing (e.g., offering, renting, selling) [aaS.
An entity might also opt to deploy a private cloud, becoming
its own provider of infrastructure services.

[0068] In some examples, laaS deployment is the process
of putting a new application, or a new version of an
application, onto a prepared application server or the like. It
may also include the process of preparing the server (e.g.,
installing libraries, daemons, etc.). This is often managed by
the cloud provider, below the hypervisor layer (e.g., the
servers, storage, network hardware, and virtualization).
Thus, the customer may be responsible for handling (OS),
middleware, and/or application deployment (e.g., on self-
service virtual machines (e.g., that can be spun up on
demand) or the like.

[0069] In some examples, [aaS provisioning may refer to
acquiring computers or virtual hosts for use, and even
installing needed libraries or services on them. In most
cases, deployment does not include provisioning, and the
provisioning may need to be performed first.

[0070] In some cases, there are two different challenges
for IaaS provisioning. First, there is the initial challenge of
provisioning the initial set of infrastructure before anything
is running. Second, there is the challenge of evolving the
existing infrastructure (e.g., adding new services, changing
services, removing services, etc.) once everything has been
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provisioned. In some cases, these two challenges may be
addressed by enabling the configuration of the infrastructure
to be defined declaratively. In other words, the infrastructure
(e.g., what components are needed and how they interact)
can be defined by one or more configuration files. Thus, the
overall topology of the infrastructure (e.g., what resources
depend on which, and how they each work together) can be
described declaratively. In some instances, once the topol-
ogy is defined, a workflow can be generated that creates
and/or manages the different components described in the
configuration files.

[0071] In some examples, an infrastructure may have
many interconnected elements. For example, there may be
one or more virtual private clouds (VPCs) (e.g., a potentially
on-demand pool of configurable and/or shared computing
resources), also known as a core network. In some examples,
there may also be one or more inbound/outbound traffic
group rules provisioned to define how the inbound and/or
outbound traffic of the network will be set up and one or
more virtual machines (VMs). Other infrastructure elements
may also be provisioned, such as a load balancer, a database,
or the like. As more and more infrastructure elements are
desired and/or added, the infrastructure may incrementally
evolve.

[0072] In some instances, continuous deployment tech-
niques may be employed to enable deployment of infra-
structure code across various virtual computing environ-
ments. Additionally, the described techniques can enable
infrastructure management within these environments. In
some examples, service teams can write code that is desired
to be deployed to one or more, but often many, different
production environments (e.g., across various different geo-
graphic locations, sometimes spanning the entire world).
However, in some examples, the infrastructure on which the
code will be deployed must first be set up. In some instances,
the provisioning can be done manually, a provisioning tool
may be utilized to provision the resources, and/or deploy-
ment tools may be utilized to deploy the code once the
infrastructure is provisioned.

[0073] FIG. 9 is a block diagram 900 illustrating an
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 902 can be communi-
catively coupled to a secure host tenancy 904 that can
include a virtual cloud network (VCN) 906 and a secure host
subnet 908. In some examples, the service operators 902
may be using one or more client computing devices, which
may be portable handheld devices (e.g., an iPhone®, cellular
telephone, an iPad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass®
head mounted display), running software such as Microsoft
Windows Mobile®, and/or a variety of mobile operating
systems such as i0S, Windows Phone, Android, BlackBerry
8, Palm OS, and the like, and being Internet, e-mail, short
message service (SMS), Blackberry®, or other communi-
cation protocol enabled. Alternatively, the client computing
devices can be general purpose personal computers includ-
ing, by way of example, personal computers and/or laptop
computers running various versions of Microsoft Win-
dows®, Apple Macintosh®, and/or Linux operating sys-
tems. The client computing devices can be workstation
computers running any of a variety of commercially-avail-
able UNIX® or UNIX-like operating systems, including
without limitation the variety of GNU/Linux operating sys-
tems, such as for example, Google Chrome OS. Alterna-
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tively, or in addition, client computing devices may be any
other electronic device, such as a thin-client computer, an
Internet-enabled gaming system (e.g., a Microsoft Xbox
gaming console with or without a Kinect® gesture input
device), and/or a personal messaging device, capable of
communicating over a network that can access the VCN 906
and/or the Internet.

[0074] The VCN 906 can include a local peering gateway
(LPG) 910 that can be communicatively coupled to a secure
shell (SSH) VCN 912 via an LPG 910 contained in the SSH
VCN 912. The SSH VCN 912 can include an SSH subnet
914, and the SSH VCN 912 can be communicatively
coupled to a control plane VCN 916 via the LPG 910
contained in the control plane VCN 916. Also, the SSH VCN
912 can be communicatively coupled to a data plane VCN
918 via an LPG 910. The control plane VCN 916 and the
data plane VCN 918 can be contained in a service tenancy
919 that can be owned and/or operated by the laaS provider.
[0075] The control plane VCN 916 can include a control
plane demilitarized zone (DMZ) tier 920 that acts as a
perimeter network (e.g., portions of a corporate network
between the corporate intranet and external networks). The
DMZ-based servers may have restricted responsibilities and
help keep breaches contained. Additionally, the DMZ tier
920 can include one or more load balancer (LLB) subnet(s)
922, a control plane app tier 924 that can include app
subnet(s) 926, a control plane data tier 928 that can include
database (DB) subnet(s) 930 (e.g., frontend DB subnet(s)
and/or backend DB subnet(s)). The LB subnet(s) 922 con-
tained in the control plane DMZ tier 920 can be communi-
catively coupled to the app subnet(s) 926 contained in the
control plane app tier 924 and an Internet gateway 934 that
can be contained in the control plane VCN 916, and the app
subnet(s) 926 can be communicatively coupled to the DB
subnet(s) 930 contained in the control plane data tier 928 and
a service gateway 936 and a network address translation
(NAT) gateway 938. The control plane VCN 916 can include
the service gateway 936 and the NAT gateway 938.
[0076] The control plane VCN 916 can include a data
plane mirror app tier 940 that can include app subnet(s) 926.
The app subnet(s) 926 contained in the data plane mirror app
tier 940 can include a virtual network interface controller
(VNIC) 942 that can execute a compute instance 944. The
compute instance 944 can communicatively couple the app
subnet(s) 926 of the data plane mirror app tier 940 to app
subnet(s) 926 that can be contained in a data plane app tier
946.

[0077] The data plane VCN 918 can include the data plane
app tier 946, a data plane DMZ tier 948, and a data plane
data tier 950. The data plane DMZ tier 948 can include LB
subnet(s) 922 that can be communicatively coupled to the
app subnet(s) 926 of the data plane app tier 946 and the
Internet gateway 934 of the data plane VCN 918. The app
subnet(s) 926 can be communicatively coupled to the ser-
vice gateway 936 of the data plane VCN 918 and the NAT
gateway 938 of the data plane VCN 918. The data plane data
tier 950 can also include the DB subnet(s) 930 that can be
communicatively coupled to the app subnet(s) 926 of the
data plane app tier 946.

[0078] The Internet gateway 934 of the control plane VCN
916 and of the data plane VCN 918 can be communicatively
coupled to a metadata management service 952 that can be
communicatively coupled to public Internet 954. Public
Internet 954 can be communicatively coupled to the NAT



US 2025/0068983 Al

gateway 938 of the control plane VCN 916 and of the data
plane VCN 918. The service gateway 936 of the control
plane VCN 916 and of the data plane VCN 918 can be
communicatively couple to cloud services 956.

[0079] In some examples, the service gateway 936 of the
control plane VCN 916 or of the data plane VCN 918 can
make application programming interface (API) calls to
cloud services 956 without going through public Internet
954. The API calls to cloud services 956 from the service
gateway 936 can be one-way: the service gateway 936 can
make API calls to cloud services 956, and cloud services 956
can send requested data to the service gateway 936. But,
cloud services 956 may not initiate API calls to the service
gateway 936.

[0080] Insome examples, the secure host tenancy 904 can
be directly connected to the service tenancy 919, which may
be otherwise isolated. The secure host subnet 908 can
communicate with the SSH subnet 914 through an LPG 910
that may enable two-way communication over an otherwise
isolated system. Connecting the secure host subnet 908 to
the SSH subnet 914 may give the secure host subnet 908
access to other entities within the service tenancy 919.
[0081] The control plane VCN 916 may allow users of the
service tenancy 919 to set up or otherwise provision desired
resources. Desired resources provisioned in the control
plane VCN 916 may be deployed or otherwise used in the
data plane VCN 918. In some examples, the control plane
VCN 916 can be isolated from the data plane VCN 918, and
the data plane mirror app tier 940 of the control plane VCN
916 can communicate with the data plane app tier 946 of the
data plane VCN 918 via VNICs 942 that can be contained
in the data plane mirror app tier 940 and the data plane app
tier 946.

[0082] In some examples, users of the system, or custom-
ers, can make requests, for example create, read, update, or
delete (CRUD) operations, through public Internet 954 that
can communicate the requests to the metadata management
service 952. The metadata management service 952 can
communicate the request to the control plane VCN 916
through the Internet gateway 934. The request can be
received by the LB subnet(s) 922 contained in the control
plane DMZ tier 920. The LB subnet(s) 922 may determine
that the request is valid, and in response to this determina-
tion, the LB subnet(s) 922 can transmit the request to app
subnet(s) 926 contained in the control plane app tier 924. If
the request is validated and requires a call to public Internet
954, the call to public Internet 954 may be transmitted to the
NAT gateway 938 that can make the call to public Internet
954. Metadata that may be desired to be stored by the request
can be stored in the DB subnet(s) 930.

[0083] In some examples, the data plane mirror app tier
940 can facilitate direct communication between the control
plane VCN 916 and the data plane VCN 918. For example,
changes, updates, or other suitable modifications to configu-
ration may be desired to be applied to the resources con-
tained in the data plane VCN 918. Via a VNIC 942, the
control plane VCN 916 can directly communicate with, and
can thereby execute the changes, updates, or other suitable
modifications to configuration to, resources contained in the
data plane VCN 918.

[0084] In some embodiments, the control plane VCN 916
and the data plane VCN 918 can be contained in the service
tenancy 919. In this case, the user, or the customer, of the
system may not own or operate either the control plane VCN
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916 or the data plane VCN 918. Instead, the IaaS provider
may own or operate the control plane VCN 916 and the data
plane VCN 918, both of which may be contained in the
service tenancy 919. This embodiment can enable isolation
of networks that may prevent users or customers from
interacting with other users’, or other customers’, resources.
Also, this embodiment may allow users or customers of the
system to store databases privately without needing to rely
on public Internet 954, which may not have a desired level
of threat prevention, for storage.

[0085] In other embodiments, the LB subnet(s) 922 con-
tained in the control plane VCN 916 can be configured to
receive a signal from the service gateway 936. In this
embodiment, the control plane VCN 916 and the data plane
VCN 918 may be configured to be called by a customer of
the laaS provider without calling public Internet 954. Cus-
tomers of the laaS provider may desire this embodiment
since database(s) that the customers use may be controlled
by the laaS provider and may be stored on the service
tenancy 919, which may be isolated from public Internet
954.

[0086] FIG. 10 is a block diagram 1000 illustrating
another example pattern of an IaaS architecture, according to
at least one embodiment. Service operators 1002 (e.g.,
service operators 902 of FIG. 9) can be communicatively
coupled to a secure host tenancy 1004 (e.g., the secure host
tenancy 904 of FIG. 9) that can include a virtual cloud
network (VCN) 1006 (e.g., the VCN 906 of FIG. 9) and a
secure host subnet 1008 (e.g., the secure host subnet 908 of
FIG. 9). The VCN 1006 can include a local peering gateway
(LPG) 1010 (e.g., the LPG 910 of FIG. 9) that can be
communicatively coupled to a secure shell (SSH) VCN 1012
(e.g., the SSH VCN 912 of FIG. 9) via an LPG 910
contained in the SSH VCN 1012. The SSH VCN 1012 can
include an SSH subnet 1014 (e.g., the SSH subnet 914 of
FIG. 9), and the SSH VCN 1012 can be communicatively
coupled to a control plane VCN 1016 (e.g., the control plane
VCN 916 of FIG. 9) via an LPG 1010 contained in the
control plane VCN 1016. The control plane VCN 1016 can
be contained in a service tenancy 1019 (e.g., the service
tenancy 919 of FIG. 9), and the data plane VCN 1018 (e.g.,
the data plane VCN 918 of FIG. 9) can be contained in a
customer tenancy 1021 that may be owned or operated by
users, or customers, of the system.

[0087] The control plane VCN 1016 can include a control
plane DMZ tier 1020 (e.g., the control plane DMZ tier 920
of FIG. 9) that can include LB subnet(s) 1022 (e.g., LB
subnet(s) 922 of FIG. 9), a control plane app tier 1024 (e.g.,
the control plane app tier 924 of FIG. 9) that can include app
subnet(s) 1026 (e.g., app subnet(s) 926 of FIG. 9), a control
plane data tier 1028 (e.g., the control plane data tier 928 of
FIG. 9) that can include database (DB) subnet(s) 1030 (e.g.,
similar to DB subnet(s) 930 of FIG. 9). The LB subnet(s)
1022 contained in the control plane DMZ tier 1020 can be
communicatively coupled to the app subnet(s) 1026 con-
tained in the control plane app tier 1024 and an Internet
gateway 1034 (e.g., the Internet gateway 934 of FIG. 9) that
can be contained in the control plane VCN 1016, and the app
subnet(s) 1026 can be communicatively coupled to the DB
subnet(s) 1030 contained in the control plane data tier 1028
and a service gateway 1036 (e.g., the service gateway 936 of
FIG. 9) and a network address translation (NAT) gateway
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1038 (e.g., the NAT gateway 938 of FIG. 9). The control
plane VCN 1016 can include the service gateway 1036 and
the NAT gateway 1038.

[0088] The control plane VCN 1016 can include a data
plane mirror app tier 1040 (e.g., the data plane mirror app
tier 940 of FIG. 9) that can include app subnet(s) 1026. The
app subnet(s) 1026 contained in the data plane mirror app
tier 1040 can include a virtual network interface controller
(VNIC) 1042 (e.g., the VNIC of 942) that can execute a
compute instance 1044 (e.g., similar to the compute instance
944 of FIG. 9). The compute instance 1044 can facilitate
communication between the app subnet(s) 1026 of the data
plane mirror app tier 1040 and the app subnet(s) 1026 that
can be contained in a data plane app tier 1046 (e.g., the data
plane app tier 946 of FIG. 9) via the VNIC 1042 contained
in the data plane mirror app tier 1040 and the VNIC 1042
contained in the data plane app tier 1046.

[0089] The Internet gateway 1034 contained in the control
plane VCN 1016 can be communicatively coupled to a
metadata management service 1052 (e.g., the metadata man-
agement service 952 of FI1G. 9) that can be communicatively
coupled to public Internet 1054 (e.g., public Internet 954 of
FIG. 9). Public Internet 1054 can be communicatively
coupled to the NAT gateway 1038 contained in the control
plane VCN 1016. The service gateway 1036 contained in the
control plane VCN 1016 can be communicatively couple to
cloud services 1056 (e.g., cloud services 956 of FIG. 9).
[0090] Insome examples, the data plane VCN 1018 can be
contained in the customer tenancy 1021. In this case, the
laaS provider may provide the control plane VCN 1016 for
each customer, and the laaS provider may, for each cus-
tomer, set up a unique compute instance 1044 that is
contained in the service tenancy 1019. Each compute
instance 1044 may allow communication between the con-
trol plane VCN 1016, contained in the service tenancy 1019,
and the data plane VCN 1018 that is contained in the
customer tenancy 1021. The compute instance 1044 may
allow resources, that are provisioned in the control plane
VCN 1016 that is contained in the service tenancy 1019, to
be deployed or otherwise used in the data plane VCN 1018
that is contained in the customer tenancy 1021.

[0091] In other examples, the customer of the laaS pro-
vider may have databases that live in the customer tenancy
1021. In this example, the control plane VCN 1016 can
include the data plane mirror app tier 1040 that can include
app subnet(s) 1026. The data plane mirror app tier 1040 can
reside in the data plane VCN 1018, but the data plane mirror
app tier 1040 may not live in the data plane VCN 1018. That
is, the data plane mirror app tier 1040 may have access to the
customer tenancy 1021, but the data plane mirror app tier
1040 may not exist in the data plane VCN 1018 or be owned
or operated by the customer of the IaaS provider. The data
plane mirror app tier 1040 may be configured to make calls
to the data plane VCN 1018 but may not be configured to
make calls to any entity contained in the control plane VCN
1016. The customer may desire to deploy or otherwise use
resources in the data plane VCN 1018 that are provisioned
in the control plane VCN 1016, and the data plane mirror
app tier 1040 can facilitate the desired deployment, or other
usage of resources, of the customer.

[0092] In some embodiments, the customer of the IaaS
provider can apply filters to the data plane VCN 1018. In this
embodiment, the customer can determine what the data
plane VCN 1018 can access, and the customer may restrict
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access to public Internet 1054 from the data plane VCN
1018. The IaaS provider may not be able to apply filters or
otherwise control access of the data plane VCN 1018 to any
outside networks or databases. Applying filters and controls
by the customer onto the data plane VCN 1018, contained in
the customer tenancy 1021, can help isolate the data plane
VCN 1018 from other customers and from public Internet
1054.

[0093] In some embodiments, cloud services 1056 can be
called by the service gateway 1036 to access services that
may not exist on public Internet 1054, on the control plane
VCN 1016, or on the data plane VCN 1018. The connection
between cloud services 1056 and the control plane VCN
1016 or the data plane VCN 1018 may not be live or
continuous. Cloud services 1056 may exist on a different
network owned or operated by the laaS provider. Cloud
services 1056 may be configured to receive calls from the
service gateway 1036 and may be configured to not receive
calls from public Internet 1054. Some cloud services 1056
may be isolated from other cloud services 1056, and the
control plane VCN 1016 may be isolated from cloud ser-
vices 1056 that may not be in the same region as the control
plane VCN 1016. For example, the control plane VCN 1016
may be located in “Region 1,” and cloud service “Deploy-
ment 9,” may be located in Region 1 and in “Region 2.” If
a call to Deployment 9 is made by the service gateway 1036
contained in the control plane VCN 1016 located in Region
1, the call may be transmitted to Deployment 9 in Region 1.
In this example, the control plane VCN 1016, or Deploy-
ment 9 in Region 1, may not be communicatively coupled to,
or otherwise in communication with, Deployment 9 in
Region 2.

[0094] FIG. 11 is a block diagram 1100 illustrating another
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 1102 (e.g., service
operators 902 of FIG. 9) can be communicatively coupled to
a secure host tenancy 1104 (e.g., the secure host tenancy 904
of FIG. 9) that can include a virtual cloud network (VCN)
1106 (e.g., the VCN 906 of FIG. 9) and a secure host subnet
1108 (e.g., the secure host subnet 908 of FIG. 9). The VCN
1106 can include an LPG 1110 (e.g., the LPG 910 of FIG. 9)
that can be communicatively coupled to an SSH VCN 1112
(e.g., the SSH VCN 912 of FIG. 9) via an LPG 1110
contained in the SSH VCN 1112. The SSH VCN 1112 can
include an SSH subnet 1114 (e.g., the SSH subnet 914 of
FIG. 9), and the SSH VCN 1112 can be communicatively
coupled to a control plane VCN 1116 (e.g., the control plane
VCN 916 of FIG. 9) via an LPG 1110 contained in the
control plane VCN 1116 and to a data plane VCN 1118 (e.g.,
the data plane 918 of FIG. 9) via an LPG 1110 contained in
the data plane VCN 1118. The control plane VCN 1116 and
the data plane VCN 1118 can be contained in a service
tenancy 1119 (e.g., the service tenancy 919 of FIG. 9).
[0095] The control plane VCN 1116 can include a control
plane DMZ tier 1120 (e.g., the control plane DMZ tier 920
of FIG. 9) that can include load balancer (LB) subnet(s)
1122 (e.g., LB subnet(s) 922 of FIG. 9), a control plane app
tier 1124 (e.g., the control plane app tier 924 of FIG. 9) that
can include app subnet(s) 1126 (e.g., similar to app subnet(s)
926 of FIG. 9), a control plane data tier 1128 (e.g., the
control plane data tier 928 of FIG. 9) that can include DB
subnet(s) 1130. The LB subnet(s) 1122 contained in the
control plane DMZ tier 1120 can be communicatively
coupled to the app subnet(s) 1126 contained in the control



US 2025/0068983 Al

plane app tier 1124 and to an Internet gateway 1134 (e.g., the
Internet gateway 934 of FI1G. 9) that can be contained in the
control plane VCN 1116, and the app subnet(s) 1126 can be
communicatively coupled to the DB subnet(s) 1130 con-
tained in the control plane data tier 1128 and to a service
gateway 1136 (e.g., the service gateway of FIG. 9) and a
network address translation (NAT) gateway 1138 (e.g., the
NAT gateway 938 of FIG. 9). The control plane VCN 1116
can include the service gateway 1136 and the NAT gateway
1138.

[0096] The data plane VCN 1118 can include a data plane
app tier 1146 (e.g., the data plane app tier 946 of FIG. 9), a
data plane DMZ tier 1148 (e.g., the data plane DMZ tier 948
of FIG. 9), and a data plane data tier 1150 (e.g., the data
plane data tier 950 of FIG. 9). The data plane DMZ tier 1148
can include LB subnet(s) 1122 that can be communicatively
coupled to trusted app subnet(s) 1160 and untrusted app
subnet(s) 1162 of the data plane app tier 1146 and the
Internet gateway 1134 contained in the data plane VCN
1118. The trusted app subnet(s) 1160 can be communica-
tively coupled to the service gateway 1136 contained in the
data plane VCN 1118, the NAT gateway 1138 contained in
the data plane VCN 1118, and DB subnet(s) 1130 contained
in the data plane data tier 1150. The untrusted app subnet(s)
1162 can be communicatively coupled to the service gate-
way 1136 contained in the data plane VCN 1118 and DB
subnet(s) 1130 contained in the data plane data tier 1150.
The data plane data tier 1150 can include DB subnet(s) 1130
that can be communicatively coupled to the service gateway
1136 contained in the data plane VCN 1118.

[0097] The untrusted app subnet(s) 1162 can include one
or more primary VNICs 1164(1)-(N) that can be communi-
catively coupled to tenant virtual machines (VMs) 1166(1)-
(N). Each tenant VM 1166(1)-(N) can be communicatively
coupled to a respective app subnet 1167(1)-(N) that can be
contained in respective container egress VCNs 1168(1)-(N)
that can be contained in respective customer tenancies
1170(1)-(N). Respective secondary VNICs 1172(1)-(N) can
facilitate communication between the untrusted app subnet
(s) 1162 contained in the data plane VCN 1118 and the app
subnet contained in the container egress VCNs 1168(1)-(N).
Each container egress VCNs 1168(1)-(N) can include a NAT
gateway 1138 that can be communicatively coupled to
public Internet 1154 (e.g., public Internet 954 of FIG. 9).

[0098] The Internet gateway 1134 contained in the control
plane VCN 1116 and contained in the data plane VCN 1118
can be communicatively coupled to a metadata management
service 1152 (e.g., the metadata management system 952 of
FIG. 9) that can be communicatively coupled to public
Internet 1154. Public Internet 1154 can be communicatively
coupled to the NAT gateway 1138 contained in the control
plane VCN 1116 and contained in the data plane VCN 1118.
The service gateway 1136 contained in the control plane
VCN 1116 and contained in the data plane VCN 1118 can be
communicatively couple to cloud services 1156.

[0099] In some embodiments, the data plane VCN 1118
can be integrated with customer tenancies 1170. This inte-
gration can be useful or desirable for customers of the laaS
provider in some cases such as a case that may desire
support when executing code. The customer may provide
code to run that may be destructive, may communicate with
other customer resources, or may otherwise cause undesir-
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able effects. In response to this, the IaaS provider may
determine whether to run code given to the laaS provider by
the customer.

[0100] In some examples, the customer of the laaS pro-
vider may grant temporary network access to the IaaS
provider and request a function to be attached to the data
plane app tier 1146. Code to run the function may be
executed in the VMs 1166(1)-(N), and the code may not be
configured to run anywhere else on the data plane VCN
1118. Each VM 1166(1)-(N) may be connected to one
customer tenancy 1170. Respective containers 1171(1)-(N)
contained in the VMs 1166(1)-(N) may be configured to run
the code. In this case, there can be a dual isolation (e.g., the
containers 1171(1)-(N) running code, where the containers
1171(1)-(N) may be contained in at least the VM 1166(1)-
(N) that are contained in the untrusted app subnet(s) 1162),
which may help prevent incorrect or otherwise undesirable
code from damaging the network of the IaaS provider or
from damaging a network of a different customer. The
containers 1171(1)-(N) may be communicatively coupled to
the customer tenancy 1170 and may be configured to trans-
mit or receive data from the customer tenancy 1170. The
containers 1171(1)-(N) may not be configured to transmit or
receive data from any other entity in the data plane VCN
1118. Upon completion of running the code, the IaaS pro-
vider may kill or otherwise dispose of the containers 1171
(D-MN).

[0101] In some embodiments, the trusted app subnet(s)
1160 may run code that may be owned or operated by the
IaaS provider. In this embodiment, the trusted app subnet(s)
1160 may be communicatively coupled to the DB subnet(s)
1130 and be configured to execute CRUD operations in the
DB subnet(s) 1130. The untrusted app subnet(s) 1162 may
be communicatively coupled to the DB subnet(s) 1130, but
in this embodiment, the untrusted app subnet(s) may be
configured to execute read operations in the DB subnet(s)
1130. The containers 1171(1)-(N) that can be contained in
the VM 1166(1)-(N) of each customer and that may run code
from the customer may not be communicatively coupled
with the DB subnet(s) 1130.

[0102] In other embodiments, the control plane VCN 1116
and the data plane VCN 1118 may not be directly commu-
nicatively coupled. In this embodiment, there may be no
direct communication between the control plane VCN 1116
and the data plane VCN 1118. However, communication can
occur indirectly through at least one method. An LPG 1110
may be established by the IaaS provider that can facilitate
communication between the control plane VCN 1116 and
the data plane VCN 1118. In another example, the control
plane VCN 1116 or the data plane VCN 1118 can make a call
to cloud services 1156 via the service gateway 1136. For
example, a call to cloud services 1156 from the control plane
VCN 1116 can include a request for a service that can
communicate with the data plane VCN 1118.

[0103] FIG. 12 is a block diagram 1200 illustrating
another example pattern of an IaaS architecture, according to
at least one embodiment. Service operators 1202 (e.g.,
service operators 902 of FIG. 9) can be communicatively
coupled to a secure host tenancy 1204 (e.g., the secure host
tenancy 904 of FIG. 9) that can include a virtual cloud
network (VCN) 1206 (e.g., the VCN 906 of FIG. 9) and a
secure host subnet 1208 (e.g., the secure host subnet 908 of
FIG. 9). The VCN 1206 can include an LPG 1210 (e.g., the
LPG 910 of FIG. 9) that can be communicatively coupled to
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an SSH VCN 1212 (e.g., the SSH VCN 912 of FIG. 9) via
an LPG 1210 contained in the SSH VCN 1212. The SSH
VCN 1212 can include an SSH subnet 1214 (e.g., the SSH
subnet 914 of FIG. 9), and the SSH VCN 1212 can be
communicatively coupled to a control plane VCN 1216
(e.g., the control plane VCN 916 of FIG. 9) via an LPG 1210
contained in the control plane VCN 1216 and to a data plane
VCN 1218 (e.g., the data plane 918 of FIG. 9) via an LPG
1210 contained in the data plane VCN 1218. The control
plane VCN 1216 and the data plane VCN 1218 can be
contained in a service tenancy 1219 (e.g., the service ten-
ancy 919 of FIG. 9).

[0104] The control plane VCN 1216 can include a control
plane DMZ tier 1220 (e.g., the control plane DMZ tier 920
of FIG. 9) that can include LB subnet(s) 1222 (e.g., LB
subnet(s) 922 of FIG. 9), a control plane app tier 1224 (e.g.,
the control plane app tier 924 of FIG. 9) that can include app
subnet(s) 1226 (e.g., app subnet(s) 926 of FIG. 9), a control
plane data tier 1228 (e.g., the control plane data tier 928 of
FIG. 9) that can include DB subnet(s) 1230 (e.g., DB
subnet(s) 1130 of F1G. 11). The LB subnet(s) 1222 contained
in the control plane DMZ tier 1220 can be communicatively
coupled to the app subnet(s) 1226 contained in the control
plane app tier 1224 and to an Internet gateway 1234 (e.g., the
Internet gateway 934 of FI1G. 9) that can be contained in the
control plane VCN 1216, and the app subnet(s) 1226 can be
communicatively coupled to the DB subnet(s) 1230 con-
tained in the control plane data tier 1228 and to a service
gateway 1236 (e.g., the service gateway of FIG. 9) and a
network address translation (NAT) gateway 1238 (e.g., the
NAT gateway 938 of FIG. 9). The control plane VCN 1216
can include the service gateway 1236 and the NAT gateway
1238.

[0105] The data plane VCN 1218 can include a data plane
app tier 1246 (e.g., the data plane app tier 946 of FIG. 9), a
data plane DMZ tier 1248 (e.g., the data plane DMZ tier 948
of FIG. 9), and a data plane data tier 1250 (e.g., the data
plane data tier 950 of FIG. 9). The data plane DMZ tier 1248
can include LB subnet(s) 1222 that can be communicatively
coupled to trusted app subnet(s) 1260 (e.g., trusted app
subnet(s) 1160 of FIG. 11) and untrusted app subnet(s) 1262
(e.g., untrusted app subnet(s) 1162 of FIG. 11) of the data
plane app tier 1246 and the Internet gateway 1234 contained
in the data plane VCN 1218. The trusted app subnet(s) 1260
can be communicatively coupled to the service gateway
1236 contained in the data plane VCN 1218, the NAT
gateway 1238 contained in the data plane VCN 1218, and
DB subnet(s) 1230 contained in the data plane data tier
1250. The untrusted app subnet(s) 1262 can be communi-
catively coupled to the service gateway 1236 contained in
the data plane VCN 1218 and DB subnet(s) 1230 contained
in the data plane data tier 1250. The data plane data tier 1250
can include DB subnet(s) 1230 that can be communicatively
coupled to the service gateway 1236 contained in the data
plane VCN 1218.

[0106] The untrusted app subnet(s) 1262 can include pri-
mary VNICs 1264(1)-(N) that can be communicatively
coupled to tenant virtual machines (VMs) 1266(1)-(N) resid-
ing within the untrusted app subnet(s) 1262. Each tenant VM
1266(1)-(N) can run code in a respective container 1267(1)-
(N), and be communicatively coupled to an app subnet 1226
that can be contained in a data plane app tier 1246 that can
be contained in a container egress VCN 1268. Respective
secondary VNICs 1272(1)-(N) can facilitate communication
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between the untrusted app subnet(s) 1262 contained in the
data plane VCN 1218 and the app subnet contained in the
container egress VCN 1268. The container egress VCN can
include a NAT gateway 1238 that can be communicatively
coupled to public Internet 1254 (e.g., public Internet 954 of
FIG. 9).

[0107] The Internet gateway 1234 contained in the control
plane VCN 1216 and contained in the data plane VCN 1218
can be communicatively coupled to a metadata management
service 1252 (e.g., the metadata management system 952 of
FIG. 9) that can be communicatively coupled to public
Internet 1254. Public Internet 1254 can be communicatively
coupled to the NAT gateway 1238 contained in the control
plane VCN 1216 and contained in the data plane

[0108] VCN 1218. The service gateway 1236 contained in
the control plane VCN 1216 and contained in the data plane
VCN 1218 can be communicatively couple to cloud services
1256.

[0109] In some examples, the pattern illustrated by the
architecture of block diagram 1200 of FIG. 12 may be
considered an exception to the pattern illustrated by the
architecture of block diagram 1100 of FIG. 11 and may be
desirable for a customer of the laaS provider if the laaS
provider cannot directly communicate with the customer
(e.g., a disconnected region). The respective containers
1267(1)-(N) that are contained in the VMs 1266(1)-(N) for
each customer can be accessed in real-time by the customer.
The containers 1267(1)-(N) may be configured to make calls
to respective secondary VNICs 1272(1)-(N) contained in
app subnet(s) 1226 of the data plane app tier 1246 that can
be contained in the container egress VCN 1268. The sec-
ondary

[0110] VNICs 1272(1)-(N) can transmit the calls to the
NAT gateway 1238 that may transmit the calls to public
Internet 1254. In this example, the containers 1267(1)-(N)
that can be accessed in real-time by the customer can be
isolated from the control plane VCN 1216 and can be
isolated from other entities contained in the data plane VCN
1218. The containers 1267(1)-(N) may also be isolated from
resources from other customers.

[0111] In other examples, the customer can use the con-
tainers 1267(1)-(N) to call cloud services 1256. In this
example, the customer may run code in the containers
1267(1)-(N) that requests a service from cloud services
1256. The containers 1267(1)-(N) can transmit this request
to the secondary VNICs 1272(1)-(N) that can transmit the
request to the NAT gateway that can transmit the request to
public Internet 1254. Public Internet 1254 can transmit the
request to LB subnet(s) 1222 contained in the control plane
VCN 1216 via the Internet gateway 1234. In response to
determining the request is valid, the LB subnet(s) can
transmit the request to app subnet(s) 1226 that can transmit
the request to cloud services 1256 via the service gateway
1236.

[0112] It should be appreciated that IaaS architectures 900,
1000, 1100, 1200 depicted in the figures may have other
components than those depicted. Further, the embodiments
shown in the figures are only some examples of a cloud
infrastructure system that may incorporate an embodiment
of the disclosure. In some other embodiments, the IaaS
systems may have more or fewer components than shown in
the figures, may combine two or more components, or may
have a different configuration or arrangement of compo-
nents.
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[0113] In certain embodiments, the laaS systems described
herein may include a suite of applications, middleware, and
database service offerings that are delivered to a customer in
a self-service, subscription-based, elastically scalable, reli-
able, highly available, and secure manner. An example of
such an IaaS system is the Oracle Cloud Infrastructure (OCI)
provided by the present assignee.

[0114] FIG. 13 illustrates an example computer system
1300, in which various embodiments may be implemented.
The system 1300 may be used to implement any of the
computer systems described above. As shown in the figure,
computer system 1300 includes a processing unit 1304 that
communicates with a number of peripheral subsystems via
a bus subsystem 1302. These peripheral subsystems may
include a processing acceleration unit 1306, an /O subsys-
tem 1308, a storage subsystem 1318 and a communications
subsystem 1324. Storage subsystem 1318 includes tangible
computer-readable storage media 1322 and a system
memory 1310.

[0115] Bus subsystem 1302 provides a mechanism for
letting the various components and subsystems of computer
system 1300 communicate with each other as intended.
Although bus subsystem 1302 is shown schematically as a
single bus, alternative embodiments of the bus subsystem
may utilize multiple buses. Bus subsystem 1302 may be any
of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such
architectures may include an Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus, which can be implemented as a
Mezzanine bus manufactured to the IEEE P1386.1 standard.
[0116] Processing unit 1304, which can be implemented as
one or more integrated circuits (e.g., a conventional micro-
processor or microcontroller), controls the operation of
computer system 1300. One or more processors may be
included in processing unit 1304. These processors may
include single core or multicore processors. In certain
embodiments, processing unit 1304 may be implemented as
one or more independent processing units 1332 and/or 1334
with single or multicore processors included in each pro-
cessing unit. In other embodiments, processing unit 1304
may also be implemented as a quad-core processing unit
formed by integrating two dual-core processors into a single
chip.

[0117] In various embodiments, processing unit 1304 can
execute a variety of programs in response to program code
and can maintain multiple concurrently executing programs
or processes. At any given time, some or all of the program
code to be executed can be resident in processor(s) 1304
and/or in storage subsystem 1318. Through suitable pro-
gramming, processor(s) 1304 can provide various function-
alities described above. Computer system 1300 may addi-
tionally include a processing acceleration unit 1306, which
can include a digital signal processor (DSP), a special-
purpose processor, and/or the like.

[0118] [/O subsystem 1308 may include user interface
input devices and user interface output devices. User inter-
face input devices may include a keyboard, pointing devices
such as a mouse or trackball, a touchpad or touch screen
incorporated into a display, a scroll wheel, a click wheel, a
dial, a button, a switch, a keypad, audio input devices with
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voice command recognition systems, microphones, and
other types of input devices. User interface input devices
may include, for example, motion sensing and/or gesture
recognition devices such as the Microsoft Kinect® motion
sensor that enables users to control and interact with an input
device, such as the Microsoft Xbox® 360 game controller,
through a natural user interface using gestures and spoken
commands. User interface input devices may also include
eye gesture recognition devices such as the Google Glass®
blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users
and transforms the eye gestures as input into an input device
(e.g., Google Glass®). Additionally, user interface input
devices may include voice recognition sensing devices that
enable users to interact with voice recognition systems (e.g.,
Siri® navigator), through voice commands.

[0119] User interface input devices may also include,
without limitation, three dimensional (3D) mice, joysticks or
pointing sticks, gamepads and graphic tablets, and audio/
visual devices such as speakers, digital cameras, digital
camcorders, portable media players, webcams, image scan-
ners, fingerprint scanners, barcode reader 3D scanners, 3D
printers, laser rangefinders, and eye gaze tracking devices.
Additionally, user interface input devices may include, for
example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission
tomography, medical ultrasonography devices. User inter-
face input devices may also include, for example, audio
input devices such as MIDI keyboards, digital musical
instruments and the like.

[0120] User interface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that
using a liquid crystal display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “output device” is intended to include all
possible types of devices and mechanisms for outputting
information from computer system 1300 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information
such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

[0121] Computer system 1300 may comprise a storage
subsystem 1318 that provides a tangible non-transitory
computer-readable storage medium for storing software and
data constructs that provide the functionality of the embodi-
ments described in this disclosure. The software can include
programs, code modules, instructions, scripts, etc., that
when executed by one or more cores or processors of
processing unit 1304 provide the functionality described
above. Storage subsystem 1318 may also provide a reposi-
tory for storing data used in accordance with the present
disclosure.

[0122] As depicted in the example in FIG. 13, storage
subsystem 1318 can include various components including
a system memory 1310, computer-readable storage media
1322, and a computer readable storage media reader 1320.
System memory 1310 may store program instructions that
are loadable and executable by processing unit 1304. System
memory 1310 may also store data that is used during the
execution of the instructions and/or data that is generated
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during the execution of the program instructions. Various
different kinds of programs may be loaded into system
memory 1310 including but not limited to client applica-
tions, Web browsers, mid-tier applications, relational data-
base management systems (RDBMS), virtual machines,
containers, etc.

[0123] System memory 1310 may also store an operating
system 1316. Examples of operating system 1316 may
include various versions of Microsoft Windows®, Apple
Macintosh®, and/or Linux operating systems, a variety of
commercially-available UNIX® or UNIX-like operating
systems (including without limitation the variety of GNU/
Linux operating systems, the Google Chrome® OS, and the
like) and/or mobile operating systems such as iOS, Win-
dows® Phone, Android® OS, BlackBerry® OS, and Palm®
OS operating systems. In certain implementations where
computer system 1300 executes one or more virtual
machines, the virtual machines along with their guest oper-
ating systems (GOSs) may be loaded into system memory
1310 and executed by one or more processors or cores of
processing unit 1304.

[0124] System memory 1310 can come in different con-
figurations depending upon the type of computer system
1300. For example, system memory 1310 may be volatile
memory (such as random access memory (RAM)) and/or
non-volatile memory (such as read-only memory (ROM),
flash memory, etc.) Different types of RAM configurations
may be provided including a static random access memory
(SRAM), a dynamic random access memory (DRAM), and
others. In some implementations, system memory 1310 may
include a basic input/output system (BIOS) containing basic
routines that help to transfer information between elements
within computer system 1300, such as during start-up.
[0125] Computer-readable storage media 1322 may rep-
resent remote, local, fixed, and/or removable storage devices
plus storage media for temporarily and/or more permanently
containing, storing, computer-readable information for use
by computer system 1300 including instructions executable
by processing unit 1304 of computer system 1300.

[0126] Computer-readable storage media 1322 can
include any appropriate media known or used in the art,
including storage media and communication media, such as
but not limited to, volatile and non-volatile, removable and
non-removable media implemented in any method or tech-
nology for storage and/or transmission of information. This
can include tangible computer-readable storage media such
as RAM, ROM, electronically erasable programmable ROM
(EEPROM), flash memory or other memory technology,
CD-ROM, digital versatile disk (DVD), or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or other tangible
computer readable media.

[0127] By way of example, computer-readable storage
media 1322 may include a hard disk drive that reads from or
writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive that reads from or writes to a removable,
nonvolatile magnetic disk, and an optical disk drive that
reads from or writes to a removable, nonvolatile optical disk
such as a CD ROM, DVD, and Blu-Ray® disk, or other
optical media. Computer-readable storage media 1322 may
include, but is not limited to, Zip® drives, flash memory
cards, universal serial bus (USB) flash drives, secure digital
(SD) cards, DVD disks, digital video tape, and the like.
Computer-readable storage media 1322 may also include,
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solid-state drives (SSD) based on non-volatile memory such
as flash-memory based SSDs, enterprise flash drives, solid
state ROM, and the like, SSDs based on volatile memory
such as solid state RAM, dynamic RAM, static RAM,
DRAM-based SSDs, magnetoresistive RAM (MRAM)
SSDs, and hybrid SSDs that use a combination of DRAM
and flash memory based SSDs. The disk drives and their
associated computer-readable media may provide non-vola-
tile storage of computer-readable instructions, data struc-
tures, program modules, and other data for computer system
1300.

[0128] Machine-readable instructions executable by one
or more processors or cores of processing unit 1304 may be
stored on a non-transitory computer-readable storage
medium. A non-transitory computer-readable storage
medium can include physically tangible memory or storage
devices that include volatile memory storage devices and/or
non-volatile storage devices. Examples of non-transitory
computer-readable storage medium include magnetic stor-
age media (e.g., disk or tapes), optical storage media (e.g.,
DVDs, CDs), various types of RAM, ROM, or flash
memory, hard drives, floppy drives, detachable memory
drives (e.g., USB drives), or other type of storage device.

[0129] Communications subsystem 1324 provides an
interface to other computer systems and networks. Commu-
nications subsystem 1324 serves as an interface for receiv-
ing data from and transmitting data to other systems from
computer system 1300. For example, communications sub-
system 1324 may enable computer system 1300 to connect
to one or more devices via the Internet. In some embodi-
ments communications subsystem 1324 can include radio
frequency (RF) transceiver components for accessing wire-
less voice and/or data networks (e.g., using cellular tele-
phone technology, advanced data network technology, such
as 3G, 4G or EDGE (enhanced data rates for global evolu-
tion), WiFi (IEEE 802.11 family standards, or other mobile
communication technologies, or any combination thereof),
global positioning system (GPS) receiver components, and/
or other components. In some embodiments communica-
tions subsystem 1324 can provide wired network connec-
tivity (e.g., Ethernet) in addition to or instead of a wireless
interface.

[0130] Insome embodiments, communications subsystem
1324 may also receive input communication in the form of
structured and/or unstructured data feeds 1326, event
streams 1328, event updates 1330, and the like on behalf of
one or more users who may use computer system 1300.

[0131] By way of example, communications subsystem
1324 may be configured to receive data feeds 1326 in
real-time from users of social networks and/or other com-
munication services such as Twitter® feeds, Facebook®
updates, web feeds such as Rich Site Summary (RSS) feeds,
and/or real-time updates from one or more third party
information sources.

[0132] Additionally, communications subsystem 1324
may also be configured to receive data in the form of
continuous data streams, which may include event streams
1328 of real-time events and/or event updates 1330, that
may be continuous or unbounded in nature with no explicit
end. Examples of applications that generate continuous data
may include, for example, sensor data applications, financial
tickers, network performance measuring tools (e.g., network
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monitoring and traffic management applications), click-
stream analysis tools, automobile traffic monitoring, and the
like.

[0133] Communications subsystem 1324 may also be con-
figured to output the structured and/or unstructured data
feeds 1326, event streams 1328, event updates 1330, and the
like to one or more databases that may be in communication
with one or more streaming data source computers coupled
to computer system 1300.

[0134] Computer system 1300 can be one of various types,
including a handheld portable device (e.g., an iPhone®
cellular phone, an iPad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted
display), a PC, a workstation, a mainframe, a kiosk, a server
rack, or any other data processing system.

[0135] Due to the ever-changing nature of computers and
networks, the description of computer system 1300 depicted
in the figure is intended only as a specific example. Many
other configurations having more or fewer components than
the system depicted in the figure are possible. For example,
customized hardware might also be used and/or particular
elements might be implemented in hardware, firmware,
software (including applets), or a combination. Further,
connection to other computing devices, such as network
input/output devices, may be employed. Based on the dis-
closure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to
implement the various embodiments.

[0136] Although specific embodiments have been
described, various modifications, alterations, alternative
constructions, and equivalents are also encompassed within
the scope of the disclosure. Embodiments are not restricted
to operation within certain specific data processing environ-
ments, but are free to operate within a plurality of data
processing environments. Additionally, although embodi-
ments have been described using a particular series of
transactions and steps, it should be apparent to those skilled
in the art that the scope of the present disclosure is not
limited to the described series of transactions and steps.
Various features and aspects of the above-described embodi-
ments may be used individually or jointly.

[0137] Further, while embodiments have been described
using a particular combination of hardware and software, it
should be recognized that other combinations of hardware
and software are also within the scope of the present
disclosure. Embodiments may be implemented only in hard-
ware, or only in software, or using combinations thereof.
The various processes described herein can be implemented
on the same processor or different processors in any com-
bination. Accordingly, where components or services are
described as being configured to perform certain operations,
such configuration can be accomplished, e.g., by designing
electronic circuits to perform the operation, by programming
programmable electronic circuits (such as microprocessors)
to perform the operation, or any combination thereof. Pro-
cesses can communicate using a variety of techniques
including but not limited to conventional techniques for inter
process communication, and different pairs of processes
may use different techniques, or the same pair of processes
may use different techniques at different times.

[0138] The specification and drawings are, accordingly, to
be regarded in an illustrative rather than a restrictive sense.
It will, however, be evident that additions, subtractions,
deletions, and other modifications and changes may be made
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thereunto without departing from the broader spirit and
scope as set forth in the claims. Thus, although specific
disclosure embodiments have been described, these are not
intended to be limiting. Various modifications and equiva-
lents are within the scope of the following claims.

[0139] The use of the terms “a” and “an” and “the” and
similar referents in the context of describing the disclosed
embodiments (especially in the context of the following
claims) are to be construed to cover both the singular and the
plural, unless otherwise indicated herein or clearly contra-
dicted by context. The terms “comprising,” “having,”
“including,” and “containing” are to be construed as open-
ended terms (i.e., meaning “including, but not limited to,”)
unless otherwise noted. The term “connected” is to be
construed as partly or wholly contained within, attached to,
or joined together, even if there is something intervening.
Recitation of ranges of values herein are merely intended to
serve as a shorthand method of referring individually to each
separate value falling within the range, unless otherwise
indicated herein and each separate value is incorporated into
the specification as if it were individually recited herein. All
methods described herein can be performed in any suitable
order unless otherwise indicated herein or otherwise clearly
contradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, is
intended merely to better illuminate embodiments and does
not pose a limitation on the scope of the disclosure unless
otherwise claimed. No language in the specification should
be construed as indicating any non-claimed element as
essential to the practice of the disclosure.

[0140] Disjunctive language such as the phrase “at least
one of X, Y, or Z,” unless specifically stated otherwise, is
intended to be understood within the context as used in
general to present that an item, term, etc., may be either X,
Y, or Z, or any combination thereof (e.g., X, Y, and/or Z).
Thus, such disjunctive language is not generally intended to,
and should not, imply that certain embodiments require at
least one of X, at least one of Y, or at least one of Z to each
be present.

[0141] Preferred embodiments of this disclosure are
described herein, including the best mode known for carry-
ing out the disclosure. Variations of those preferred embodi-
ments may become apparent to those of ordinary skill in the
art upon reading the foregoing description. Those of ordi-
nary skill should be able to employ such variations as
appropriate and the disclosure may be practiced otherwise
than as specifically described herein. Accordingly, this dis-
closure includes all modifications and equivalents of the
subject matter recited in the claims appended hereto as
permitted by applicable law. Moreover, any combination of
the above-described elements in all possible variations
thereof is encompassed by the disclosure unless otherwise
indicated herein.

[0142] All references, including publications, patent appli-
cations, and patents, cited herein are hereby incorporated by
reference to the same extent as if each reference were
individually and specifically indicated to be incorporated by
reference and were set forth in its entirety herein.

[0143] In the foregoing specification, aspects of the dis-
closure are described with reference to specific embodi-
ments thereof, but those skilled in the art will recognize that
the disclosure is not limited thereto. Various features and
aspects of the above-described disclosure may be used
individually or jointly. Further, embodiments can be utilized
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in any number of environments and applications beyond
those described herein without departing from the broader
spirit and scope of the specification. The specification and
drawings are, accordingly, to be regarded as illustrative
rather than restrictive.

What is claimed is:

1. A method comprising:

receiving, by a computing device, an accuracy target for

one or more machine learning models;

training, by the computing device, the one or more

machine learning models on a labeled training set of
labeled data;

until the accuracy of the one or more machine learning

models satisfies the accuracy target:

sampling, by the computing device, a set of unlabeled
data to obtain a random training set of unlabeled
data;

labeling, by the computing device and using the one or
more machine learning models, the random training
set of unlabeled data to produce a pseudo labeled
training set;

correcting, by the computing device, the labels on a
random subset of the pseudo labeled training set;

training, by the computing device, the one or more
machine learning models on the labeled training set,
the corrected random subset, and the pseudo labeled
training set; and

evaluating, by the computing device, the accuracy of
the one or more machine learning models using an
evaluation set of labeled data; and

deploying, by the computing device, the one or more

machine learning models based at least in part on the
accuracy of the one or more machine learning models
satisfying the accuracy target based at least in part on
the evaluating.

2. The method of claim 1, wherein the accuracy target
comprises a threshold determined based at least in part on a
performance of the one or more machine learning models in
classifying unlabeled data.

3. The method of claim 1, wherein the labeling comprises
ensemble learning with multiple machine learning models.

4. The method of claim 3, wherein ensemble learning
comprises at least one of bagging, stacking, or boosting.

5. The method of claim 1, wherein the labeling comprises
test time augmentation with at least one of vertical/horizon-
tal flipping, blurring, random cropping, or histogram equal-
ization.

6. The method of claim 1, wherein the evaluating further
comprises:

identifying a performance deficiency where the accuracy

of the one or more models in classifying a class of
unlabeled data is below a threshold; and

augmenting the random subset of the pseudo labeled

training set with a targeted subset comprising data from
the pseudo labeled training set that are labeled with the
class.

7. The method of claim 1, wherein the labeled training set
of'labeled data is smaller than the pseudo labeled training set
so that a small amount of labeled data can be used to create
a larger pseudo labeled training set.

8. A non-transitory computer-readable medium storing a
plurality of instructions that when executed control a com-
puter system to perform operations comprising:
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receiving, by a computing device, an accuracy target for

one or more machine learning models;

training, by the computing device, the one or more

machine learning models on a labeled training set of
labeled data;

until the accuracy of the one or more machine learning

models satisfies the accuracy target:
sampling, by the computing device, a set of unlabeled
data to obtain a random training set of unlabeled
data;
labeling, by the computing device and using the one or
more machine learning models, the random training
set of unlabeled data to produce a pseudo labeled
training set;
correcting, by the computing device, the labels on a
random subset of the pseudo labeled training set;
training, by the computing device, the one or more
machine learning models on the labeled training
set, the corrected random subset, and the pseudo
labeled training set; and
evaluating, by the computing device, the accuracy of
the one or more machine learning models using an
evaluation set of labeled data; and
deploying, by the computing device, the one or more
machine learning models based at least in part on the
accuracy of the one or more machine learning mod-
els satisfying the accuracy target based at least in part
on the evaluating.

9. The non-transitory computer readable medium of claim
8, wherein the accuracy target comprises a threshold deter-
mined based at least in part on a performance of the one or
more machine learning models in classifying unlabeled data.

10. The non-transitory computer readable medium of
claim 8, wherein the labeling comprises ensemble learning
with multiple machine learning models.

11. The non-transitory computer readable medium of
claim 10, wherein ensemble learning comprises at least one
of bagging, stacking, or boosting.

12. The non-transitory computer readable medium of
claim 8, wherein the labeling comprises test time augmen-
tation with at least one of vertical’/horizontal flipping, blur-
ring, random cropping, or histogram equalization.

13. The non-transitory computer readable medium of
claim 8, wherein the evaluating further comprises:

identifying a performance deficiency where the accuracy

of the one or more models in classifying a class of
unlabeled data is below a threshold; and

augmenting the random subset of the pseudo labeled

training set with a targeted subset comprising data from
the pseudo labeled training set that are labeled with the
class.

14. The non-transitory computer readable medium of
claim 8, wherein the labeled training set of labeled data is
smaller than the pseudo labeled training set so that a small
amount of labeled data can be used to create a larger pseudo
labeled training set.

15. A system comprising:

a computer-readable medium; and

one or more processors for executing instructions stored

on the computer-readable medium to at least perform

operations comprising:

receiving, by a computing device, an accuracy target
for one or more machine learning models;
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training, by the computing device, the one or more
machine learning models on a labeled training set of
labeled data;
until the accuracy of the one or more machine learning
models satisfies the accuracy target:
sampling, by the computing device, a set of unla-
beled data to obtain a random training set of
unlabeled data;
labeling, by the computing device and using the one
or more machine learning models, the random
training set of unlabeled data to produce a pseudo
labeled training set;
correcting, by the computing device, the labels on a
random subset of the pseudo labeled training set;
training, by the computing device, the one or more
machine learning models on the labeled training
set, the corrected random subset, and the pseudo
labeled training set; and
evaluating, by the computing device, the accuracy of
the one or more machine learning models using an
evaluation set of labeled data; and
deploying, by the computing device, the one or more
machine learning models based at least in part on the
accuracy of the one or more machine learning mod-
els satisfying the accuracy target based at least in part
on the evaluating.
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16. The system of claim 15, wherein the accuracy target
comprises a threshold determined based at least in part on a
performance of the one or more machine learning models in
classifying unlabeled data.

17. The system of claim 15, wherein the labeling com-
prises ensemble learning with multiple machine learning
models.

18. The system of claim 17, wherein ensemble learning
comprises at least one of bagging, stacking, or boosting.

19. The system of claim 15, wherein the labeling com-
prises test time augmentation with at least one of vertical/
horizontal flipping, blurring, random cropping, or histogram
equalization.

20. The system of claim 15, wherein the evaluating further
comprises:

identifying a performance deficiency where the accuracy
of the one or more models in classifying a class of
unlabeled data is below a threshold; and

augmenting the random subset of the pseudo labeled
training set with a targeted subset comprising data from
the pseudo labeled training set that are labeled with the
class.



