US 20250157210A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2025/0157210 A1

Olaleye et al. (43) Pub. Date: May 15, 2025
(54) TECHNIQUES FOR DYNAMIC TIME-BASED GO6V 10/774 (2022.01)
CUSTOM MODEL GENERATION GO6V 10/778 (2022.01)
(52) US. CL
(71) Applicant: Oracle International Corporation, CPC ... GO6V 10/82 (2022.01); GO6N 3/086
Redwood Shores, CA (US) (2013.01); GO6V 10/774 (2022.01); GOV
. 10/7788 (2022.01)
(72) Inventors: QOlaitan Olaleye, Millburn, NJ (US);
Arunjeyan T V Seshier (57) ABSTRACT
Venkatachalapathy, Bengaluru (IN);
Jinghou Zhang, Sammamish, WA Techniques are disclosed for dynamic time-based custom
(US); Jun Qian, Bellevue, WA (US) model generation as part of infrastructure-as-a-service
(IaaS) environment. A custom model generation service may
(73) Assignee: Oracle International Corporation, receive a set of training data and a time-based constraints for
Redwood Shores, CA (US) training a machine learning model. The custom model
generation service may subsample the training data and
(21) Appl. No.: 19/022,830 generate a set of optimized tuned hyperparameters for a
. machine learning model to be trained using the subsampled
(22) Filed: Jan. 15, 2025 training data. Ai experimental interval tiile of traininljg is
Related U.S. Application Data determined and the machine learning model is trained on the
subsampled training data according to the optimized tuned
(63) Continuation of application No. 17/586,583, filed on hyperparameters over a set of training intervals similar to the
Jan. 27, 2022, now Pat. No. 12,230,020. experimental time interval. A customized machine learning
A . . model trained in the time-based constraint is output. The
Publication Classification hyperparameter tuning may be performed using a modified
(51) Int. CL mutating genetic algorithm for a set of hyperparameters to
GO6V 10/82 (2022.01) determine the optimized tuned hyperparameters prior to the
GO6N 3/086 (2023.01) training.
100 k CLENT DEVICE

CLIENT INTERFACE

CLOUD-BASED SERVICES

CusTOM MODEL SERVICE

CLIENT INTERACTION INSTRUCTIONS

MODEL CREATION INSTRUCTIONS

162

ERVER CLUSTER
150

Patent Application Publication = May 15, 2025 Sheet 1 of 12 US 2025/0157210 A1

100 k CLIENT DEVICE
110

CLIENT INTERFACE
120

CLOUD-BASED SERVICES
140

CusToM MODEL SERVICE
160

CLIENT INTERACTION INSTRUCTIONS
161

MODEL CREATION INSTRUCTIONS
162

SERVER CLUSTER
150

FIG. 1

US 2025/0157210 A1

May 15, 2025 Sheet 2 of 12

Patent Application Publication

¢ Old
XA (NA4
SNOILONMLSN] ONILST] SNOLLONYLSN]
DNINML ¥ILINVEVINTAH
44 755
SNOLLOMYLSN| NOWLYS3 L
SNOILOMYLSN} XOgQ HOHONY
1ee I
SNOLLONHLSN] lce
NOILYNIWHZ L3 NOILVHI LY SNOILONYLSN| ONINdNYSENS
0ce 0ce
SNOILOMYLSN ONINIVY [, SNOLLONMLSN} ONISSIOOUd~Td
29l
SNOILONYLISN| NOILYIHD) TIGOW
(§]¥4 00<¢
SNOILONMLSN] ONISSIoOU YIV(SNOILOMY 1SN} DNIOVANILING

1ol
SNOLLONYLSN| NOILOVHILIN] INITD

05t
30IAY3S TIAON WOLSND

Patent Application Publication = May 15, 2025 Sheet 3 of 12 US 2025/0157210 A1

300

\

RECEIVE TRAINING DATA INCLUDING ONE OR MORE
TRAINING DATASETS AND AN INDICATION OF A FIRST
TIME PERIOD
310

A 4
DETERMINE A MODIFIED TRAINING DATASET AND
HYPERPARAMETER VALUES FOR A MACHINE LEARNING
MODEL
320

v

DETERMINE ONE OR MORE TRAINING ITERATIONS
CORRESPONDING TO SECOND TIME PERIODS THAT
TOTAL LESS THAN THE FIRST TIME PERIOD
330

A4
FOR EACH TRAINING ITERATION DURING THE FIRST
TIME PERIOD, TRAINING THE MACHINE LEARNING
MODEL USING THE MODIFIED TRAINING DATASET AND
THE HYPERPARAMETER VALUES
340

v

OQUTPUT THE TRAINED MACHINE LEARNING MODEL
350

FIG. 3

Patent Application Publication = May 15, 2025 Sheet 4 of 12 US 2025/0157210 A1

400

\

RECEIVE TRAINING DATA INCLUDING ONE OR MORE
TRAINING DATASETS AND AN INDICATION OF A FIRST
TIME PERIOD FOR TRAINING A CONVOLUTIONAL
NEURAL NETWORK (CNN)

410

h 4

PERFORM SUBSAMPLING TO GENERATE A MODIFIED
TRAINING DATASET FOR TRAINING THE CNN
420

v

PERFORM ANCHOR BOX OPTIMIZATION FOR THE CNN
430

TRANSFORM THE MODIFIED DATASET FOR INPUT TO A
CNN
440

v

(GENERATE A SET OF HYPERPARAMETER VALUES
USING A MUTATING GENETIC ALGORITHM
450

FIG. 4

Patent Application Publication @ May 15, 2025 Sheet 5 of 12

500 \

US 2025/0157210 A1

RECEIVE A MODIFIED TRAINING DATASET AND A SET OF
HYPERPARAMETERS FOR A CONVOLUTIONAL NEURAL
NETWORK {CNN)

510

Y.

DETERMINE A MEASURED TRAINING {TERATION TIME
PERIOD {EPOCH) FOR TRAINING THE CNN
520

¥

DETERMINE A NUMBER OF EPOCHS FOR TRAINING THE
CNN DURING A FIRST TIME PERIOD
530

FINAL EPOCH PERFORMED?
540

NO

\ 4

OUTPUT TRAINED CNN
570

A 4

GENERATE A NEW ARRANGEMENT OF THE MODIFIED
TRAINING DATASET
550

I

TRAIN THE CNN USING THE NEW ARRANGEMENT OF
THE MODIFIED TRAINING DATASET AND THE SET OF
HYPERPARAMETER VALUES DURING THE CURRENT

EPOCH
560

FIG. 5

US 2025/0157210 A1

May 15, 2025 Sheet 6 of 12

Patent Application Publication

049

099

099

0v9

0€9

029

0L9

009

9 'OI4

:

NOILVUHINIY TIAON NID38 v

(Bu1sse0id NdO wniwald) 481 p|oo)

U 1181 | @ouewIoued

(918Y UONIPBIY 108110D) AdeInDoy u :10} ®N_E_uao

N

INOH |

v :uoneinq Buiuiel | xe

avoidn 10 21958# 107 Bued

U ;jeseje(buluies |

>\

(sHOMIBN [BINBN |EUOIINIOAUOD) |BPON UoiD81a(198l

\—/

|opOIN 10993

f

dOTAYHS NOLLVYINTID THAOW

US 2025/0157210 A1

May 15, 2025 Sheet 7 of 12

Patent Application Publication

04

004

Bujuies] JO INOH | [euoHIPPY

(UIM UDISIDBUY pejosdxg AN :pasn 1eseleq 10 Y \
4 N [)
:abrjuaniad ||ooy UOISIBL obeteny
- AN J

L 9OId4
4
|/|\m TAAQOW AG3INIVHL GVOINMOQG v
{(USHEI JoH 1) BUGWESGRS MBN UTIA [BPOJ UIBIeN v 4 LG coney Bunse) /Buie ‘.U
~N /A 3\ |oseee ‘yoodzjewt | Bay
(O 7, 4y O G
SRR 1111111111111) ANm_——ee

¢ A
Roeinooy -Jo} uopezrudo
HH L :uonein Buiues |
NND adA) 19ponN

SiswER g nau)

. J

ajejdwio buiuiel] |[9pon

HOTAYHS NOLLVYINTD THAOW

-
< 8 "OI4
= 708
o i .- o
i 08~ S S . o || e
=) Od] d]
e %m
8 a7
2 = S i w@
¥ ») . eemomcmc e m————————. H

...... m = bi8 i1l 80
= ” 0eg Sieuans ad L vrg — 2t8 068 Sieuang §q aurs || 1 hevang

; A :
~ ; i 0GgUeIL %28 9 A HSS | | mﬂum
m B1eq eUeid Eled . &Mmgm i §70 481 B1R(] BuB|d [0UOD) @W@Au A
: g X m
z | et — 0v8 JelL ddy 5 e %08
2 P N fmvsszw ddy | - 218 AOLN BUBId BIeq 928 sjeuqng ddy NOA - NOA
: : HSS

& {1 gpgel ddy oueld eleg P 28 4a1) ddy aue|d josu00
a i : :
W : L 228 SPUING G | : ” Zz8 S18ugns g1 m
s : ! m : ;
= A et 028 481 ZQ Bueld [04u0)
g acg8 Aemajes @sﬁmw 918 NOA
= hj Stusju aueld jonuon .
= ; 618 foueus] somieg| |
z "] m
£ : e T -t 708
= . 258 0NS ; " siopeid0
m Weiusbeueyy BlepRIsiN HURR R SO » 968 80IIBS
= _ A SEOINBS
Ml brmencaes s = S e A =¥ pnojD
= 58 1Bua| m /
S QR o { T S S— 008
[~™

US 2025/0157210 A1

May 15, 2025 Sheet 9 of 12

Patent Application Publication

Pueriognd (€T

6 9I4
53@
018 o T . ueUs |
—b9) T
; 01 6-paairoag
ol | 6]
5 w6 | i m%@
06 SIRUGNS 83 ﬂmmw Jougng
: 1S0H
876 401 @.._M aIN0ag
BJeQ QUR|d JORUO
| M (] @UBld 104U0) et
M i
T 9 J 926 ¢l6
sheugng FT 1T 1T P=gR0N___ | 1| .. sjeugng ddy NOAHSS
ddy 6 w ; x 264914
Ov6 Je1L ddy | : Y ddy eueid j0auo)
Zve — Jou sueld eleq || : :
443
v Jot] ddy sueld eleq o " i | sileuansdi 0¢6 811
5 I ’ A 7NQ sued jouo)
9e6 Aevaten))(* ge6 Aemalen (' peg Aemales) 9LBNOA 956
816 NOA sueld ele(] DS ‘_.MZ jouisiu| aUEld [04U0T) $O0INBS PO
126 foueus] JewWosny 616 fourua] soNIeS 7'
256
B0MBg JusLebeue)y
ElEpEISy
A
o 4/»
006

US 2025/0157210 A1

May 15, 2025 Sheet 10 of 12

0L '9id
P T . RN
= SR 010} ./N«/ v olor 0100 688
N)/901 18U ddy SC) TN e ETCE e 65— oyt
=7 NM: v!\ mot@msmo@%a%o oo
dHfemales) (NJB90LINOA =
|\ LYN /%565 TBiiiauon 0£0} (Sheuans 60 g
A r 0£0L (Sheuang g frm-eeeer SRaY
NJ0L0} foueus | Jetojsn) H1 euang 8004
- 8201 oIl i JBUCng
X ; Eje(dueld JoIIoD)| ; m@ %Mmm
rn —e- H 3
= OINA I : : T
2)2901 Jougng dely — 3 = Souns ddy oo A | 6
geol ¢L0—"¢ o0t] o) I R yzo sou il 2L0L w,_o%\w
leoeg (2lgo0) NoA || N .y " ddybueiqjoauog) | || NOAHSS
YN /s%5ib3 Jauienion 210900 WAl o0 — n
(200201 Roueue | sawajsny ||l [s .
)50] ol e |
(shaugng ddy pejsniun I~ 4 paisniy v ARE
wso:wc%w Q%@% 590 1L ddsueg g v Ns_a«m AR
4 o Byeuans g1 ({0 55 i s
IS 8101 011 ZIQ ueidiered : — SUEd 1000 pnojo
i : ; A A
{1)0201 Aoueuay Jewoisny) 9 y
........ Remajeo) | { Aemages)) [Aemajes) i w P
1N Busejuy/ \8ona
i W 6101 Aoueus] soneg

(NFLLZ0L %

Joueuon
pusba depy

/ 0004

Patent Application Publication

US 2025/0157210 A1

May 15, 2025 Sheet 11 of 12

Patent Application Publication

b O
01T :
) v o ol i
“BL11 NOA SuBld Bfeq @k\; ObLY 1
061 | JoI] B1eq sueld ejeq 150H
BIeg
| i/ 011 (Sheudng 8@+t
A A : -
| e w 0c}) (sheugng a@ 904§
iy uons oy Il e " U=/ E R SN 116 A (R s . Puans
....................... it : S
H{NJzLLL DINAF MMM@WE e it : 8211 o1l jeq sueld jonuog 6 ow%omm
e il ()rat ; . P
H{2izih o " NS:E m oL -] |6
,,,,,,,,,,,,,,,, > ~ x\ gmg w;§> O A:M@e h 9z11 (sheugng ddy Chil 1 9011
M NF NN w w Q_Z> : A vu@ﬂﬂﬁm QQ(ﬁ@%m.br_m} m. 3 QQ HOW O_‘ v ~‘ ZO>
9y |iie1) ddy aueld ejeg *__ Oyliiey ddyisug yei) JolL Oy Sueid [04U0 S A
11 T 201
- I zz11 (sheuans g7 w Zz) | (Sheudng g sioisdo
A " Q0INg
8yl | elLiIZNG sueldered ; ARl N_zm Aueld PAue)
¥ i Jiqng JBWwoIsny wmA) m 7
L Remejenyf Aemajen) Aemaes) A.-.@.mmwzo A
Renaen) ag; 1 NOA b.\z SR \SINS/ guier \onuosy 061 wmw_wzmm
LYN /ss0163 seueiuo)) + 611} Aoueus| somies K
¢Sl | SOoNRG
usisbeuR)y RIEpEIBN

Jauuog
pusfia] depy

gL

/ooi

= ZL 94
(=]
Yo
o
e~
W
s
y tt—————————
o]¥A!
- WALSASENG 3OVHOLS
=)
¢¢C) ViIG3a

- 17T WALSAS ONILYHIAO FOVHOLS F18vaVIY
S 08t Ya4) L4} ~43LNdNO7)
S sawvadn| |swvaulg| | sazaq —
- IN3AZ IN3A viv(Q yiel viv(WYdo0ud
2 %
20! 2121 SWYHO0Hd NOLLYOIddY HIAYIH VIGIN
M, - W3LSASENG SNOILYDINAIINOD AONIN W3LSAS
Yo
>
«®
= f _
S rAVAR —
m S 9021 LNN FEIT LINN ¢ech LNn
2 80C} NOILYH1300Y ONISSI00YA NS ONISS300ud
= WALSASENS Oft ONISSI00Y ang
nm . IHovy | | 3HOVD IHOVD
(=}
.m ENO) 2ROD £ 00
AW ¥zl

A
£) LINN ONISSIO0Nd
=
[~™

US 2025/0157210 Al

TECHNIQUES FOR DYNAMIC TIME-BASED
CUSTOM MODEL GENERATION

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] The present application is a continuation of, and
claims the benefit and priority to U.S. application Ser. No.
17/586,583, filed on Jan. 27, 2022, entitled “TECHNIQUES
FOR DYNAMIC TIME-BASED CUSTOM MODEL GEN-
ERATION,” the entire contents of which is hereby incor-
porated by reference as if fully set forth herein, under 35
US.C. § 120.

BACKGROUND

[0002] Machine-learning models are employed to solve a
variety of problems in numerous fields. Examples of
machine learning model uses include modelling to produce
better data clustering, predictive analysis, natural language
processing, computer vision, entity recognition, etc. A
machine learning model is configured to “learn” from a
training dataset and the associated “ground-truth” labels
according to specified hyperparameters for training. The
hyperparameters determine the manner in which the model
is configured and subsequently trained so that the model
experiences better optimization and learning towards finding
the best (optimal) solution. Once trained, the model can infer
i.e., accept an input dataset, which maybe similar to the
training datasets, process the input dataset, and output a
prediction result that includes a predicted label that relates to
the input.

[0003] Accurately training a machine learning model is a
difficult task and often requires careful optimization of the
training hyperparameters. A comprehensive training dataset
is often required to train a model robustly as well. Training
a machine learning model can also be a resource intensive
process that is also more efficient on particular hardware
infrastructures, and the training resources required are expo-
nentially more when large amounts of data and evaluation of
different training hyperparameters are involved. Thus, train-
ing a machine learning model is often performed by a
dedicated entity on behalf of a requestor, also referred to as
a client or customer, using their own training dataset. This
arrangement is especially effective as a cloud-based service,
wherein a client may delegate the task of training a model to
a cloud-based service provider who will generate and train
the model using optimized and dedicated computing
resources that the client usually does not have access to.

[0004] For example, a client may desire to utilize a
machine learning model such as a convolutional neural
network (CNN) machine learning model to detect and
categorize objects in a digital image when the digital image
is given to the CNN as input. The client may own or
otherwise generate training datasets that may be used to train
such a CNN machine learning model to detect objects in an
input dataset (e.g., various digital images of cars in which
the cars are detected and labelled for the model the learn
from). However, the client may not have personal access to
an adequate computer infrastructure or knowledge on how to
get optimized hyperparameters to train the CNN. A cloud-
services provider may use the client’s training dataset and
generate and train the CNN model on their behalf commer-
cially.

May 15, 2025

[0005] Training a machine learning model is not a deter-
ministic process, as there is no definite period of time or
known configuration in which a machine learning model has
been “fully-trained,” or optimized such that the models
accuracy with label prediction is sufficient. A cloud-services
provider will attempt to optimize a model by testing and
determining hyperparameters for training the model and
performing various phases of training with the training
dataset. It is very difficult to predict at what point a machine
learning model has been properly “trained” to provide
permissible results given an input dataset. A highly-trained
model with optimized hyperparameters will generate more
accurate results, but the training period will often take a
significant amount of time, stretching into days or even
weeks of constant training depending on the size of the
dataset. Tuning the hyperparameters to optimize the training
process is also a time intensive task. Thus, clients are often
forced to choose between an less-accurate model generated
in a shorter period of time using less training data, or a
more-accurate model generated in a longer period of time.

[0006] The problems above are compounded when a
cloud-services provider generates the model on behalf of a
client. In one example, a client may specify that the model
must be generated in a certain period of time so that the
client may utilize the model as part of an important time-
sensitive task (e.g., traffic detection in new highways and
roadways that is necessary to prevent gridlock). In these
cases, a model generation service may be required to stop
training the machine learning model after a certain period of
time—often when the model has not been optimized it will
not produce highly-accurate results. In some cases, the
cloud-services provider may offer model generation as part
of' a commercial service and producing inaccurate machine
learning models is not acceptable to clients. In some cases,
clients that do not have access to optimal hardware and time
resources offered by the cloud-services provider (e.g., those
subscribing to lower cost services) may also receive models
which were not fully trained to optimal levels because the
hardware used to train the model was not highly-optimized
and expensive (e.g., graphical processing units, or GPUs).
Thus, the cloud-services provider is at a disadvantage when
attempting to train models in a shorter period of time or
when using less optimal hardware to train the machine
learning models. This also affects the experience of the
client.

BRIEF SUMMARY

[0007] Aspects of the present disclosure include tech-
niques for dynamic time-based custom model generation.
Specifically, a machine learning model may be generated
and trained optimally within a predetermined time period
and/or using a predetermined set of resources. A client or
other entity may provide a training dataset for training a
machine learning model as well as model generation con-
straints relating to rules on the generation and training of a
model. For example, a model generation parameter may
provide that a machine learning model should be trained in
a time period no greater than one hour. Given the training
dataset and the model generation constraints, a model train-
ing process is executed which will optimize model genera-
tion and training adhering to the constraints specified by the
client. For example, a model is generated and trained
according to a selected set of hyperparameters using a

US 2025/0157210 Al

modified training dataset, each of which is optimized for
training within a period of one hour.

[0008] An example method comprises receiving, by a
computing device, training data, the training data compris-
ing one or more training datasets and an indication of a first
time period; determining, by the computing device and
based at least in part on the training data, a modified training
dataset and one or more hyperparameter values for a
machine learning model; determining, by the computing
device and based at least in part on the modified training
dataset and the first time period, one or more training
iterations, each training iteration of the one or more training
iterations corresponding to a second time period and the one
or more training iterations corresponding to a total time
period that is less than or equal to the first time period; for
each training iteration in the one or more training iterations,
training, by the computing device, the machine learning
model using the one or more hyperparameter values and the
modified training dataset; and outputting, by a computing
device, the trained machine learning model.

[0009] In some examples, the training data is received
from a client device communicatively coupled to the com-
puting device and the computing device outputs the trained
machine learning model to the client device in response to
receiving the training data.

[0010] In some examples, the trained machine learning
model is a convolutional neural network machine learning
model configured to receive input data including one or
more digital images and output, based at least in part on the
input data, one or more predictions associated with the one
or more digital images, the one or more training datasets
comprise one or more first digital images, and the modified
training dataset comprises one or more second digital
images that are a subset of the one or more first digital
images.

[0011] In some examples, determining the modified train-
ing dataset comprises determining, by the computing device,
a subset of the one or more training datasets based at least
in part on one or more features of the training data and
generating the modified training dataset including the subset
of the one or more training datasets.

[0012] In some examples, determining the one or more
hyperparameter values for the machine learning model com-
prises: determining, by the computing device and based at
least in part on the modified training dataset and the machine
learning model a set of hyperparameters for training the
machine learning model, selecting, by the computing device
and based at least in part on the first time period, a subset of
hyperparameters of the set of hyperparameters, and gener-
ating, by the computing device and using a mutating genetic
algorithm and during a second time period that is less than
the first time period, a set of one or more values for the
subset of hyperparameters.

[0013] In some examples, determining the one or more
training iterations comprises: performing, by the computing
device, an initial training of the machine learning model
using the one or more hyperparameter values and the
modified training dataset, determining, by the computing
device, an initial time period corresponding to the initial
training, and determining, by the computing device, a num-
ber of initial time periods that, in summation, are less than
or equal time to the first time period.

[0014] In some examples, the modified training dataset
includes a plurality of data objects that are input to the

May 15, 2025

machine learning model to cause training the machine
learning model, and each training iteration of the one or
more training iterations is performed using the modified
training dataset including the plurality of data objects in a
unique sequence.

[0015] Insome examples, the computing device comprises
a processing infrastructure of a processing type, and deter-
mining the modified training dataset, the one or more
hyperparameter values, and the one or more training itera-
tions is further based at least in part in part on the processing
type of the computing device.

[0016] In some examples, the example method further
comprises comparing, by the computing device, a number of
data objects in the one or more training datasets to an object
threshold, and determining, by the computing device, that
the number of data objects in the one or more training
datasets exceeds the object threshold, wherein determining
the modified training dataset comprises including a number
of data objects from the one or more training datasets in the
modified training dataset that is less than or equal to the
object threshold.

[0017] In some examples, the example method further
comprises generating, by the computing device and using
the one or more training datasets, one or more testing
metrics for the trained machine learning model, and output-
ting the one or more testing metrics.

[0018] Another aspect of the present disclosure comprises
a system comprising one or more processors and a non-
transitory computer-readable media that includes instruc-
tions that when executed by the one or more processors,
cause the one or more processors to perform the methods
described above.

[0019] Another aspect of the present disclosure comprises
a non-transitory computer-readable media that includes
instructions that when executed by one or more processors,
cause the one or more processors to perform the methods
described above.

[0020] These illustrative embodiments are mentioned not
to limit or define the disclosure, but to provide examples to
aid understanding thereof. Additional embodiments are dis-
cussed in the Detailed Description, and further description is
provided there.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] Features, embodiments, and advantages of the
present disclosure are better understood when the following
Detailed Description is read with reference to the accom-
panying drawings.

[0022] FIG. 1 is a block diagram of a distributed infra-
structure-as-a service system for facilitating a cloud-based
service accessible to a client according to certain embodi-
ments of the present disclosure.

[0023] FIG. 2 is a block diagram of an example custom
model service accessible as part of a cloud-based service
according to certain embodiments of the present disclosure.
[0024] FIG. 3 depicts an example flowchart of a process
for generating a trained custom machine learning model
according to certain embodiments of the present disclosure.
[0025] FIG. 4 depicts an example flowchart of a pre-
process for generating a trained custom machine learning
model according to certain embodiments of the present
disclosure.

US 2025/0157210 Al

[0026] FIG. 5 depicts an example flowchart of a process
for iteratively training a custom machine learning model
over a time period according to certain embodiments of the
present disclosure.

[0027] FIG. 6 depicts an example graphical interface and
dashboard for requesting generating of a trained custom
machine learning model according to certain embodiments
of the present disclosure.

[0028] FIG. 7 depicts an example graphical interface and
dashboard for viewing results of the training of a custom
machine learning model according to certain embodiments
of the present disclosure.

[0029] FIG. 8 is a block diagram illustrating one pattern
for implementing a cloud infrastructure as a service system,
according to at least one embodiment.

[0030] FIG. 9 is a block diagram illustrating another
pattern for implementing a cloud infrastructure as a service
system, according to at least one embodiment.

[0031] FIG. 10 is a block diagram illustrating another
pattern for implementing a cloud infrastructure as a service
system, according to at least one embodiment.

[0032] FIG. 11 is a block diagram illustrating another
pattern for implementing a cloud infrastructure as a service
system, according to at least one embodiment.

[0033] FIG. 12 is a block diagram illustrating an example
computer system, according to at least one embodiment.

DETAILED DESCRIPTION

[0034] In the following description, for the purposes of
explanation, specific details are set forth in order to provide
athorough understanding of certain embodiments. However,
it will be apparent that various embodiments may be prac-
ticed without these specific details. The figures and descrip-
tion are not intended to be restrictive.

[0035] A cloud-services provider may offer services that a
client (also referred to herein as “users,” “customers,” and
“subscribers™) can subscribe to. Cloud-based computing
services allow the client to utilize cloud-based resources
owned and operated by the service provider for the client’s
own services and applications, for example generation of a
machine learning model using a training dataset. The client
may provide the training dataset to the cloud-services pro-
vider with the expectation that the cloud-services provider
will generate and train a machine learning model using the
training data that will be sent back to the client. The client
will then use the trained machine learning model to input
some data in a similar format to the training data (e.g. digital
image data) to generate an output prediction (e.g., a set of
labels for the input digital image data corresponding to
predictions of objects detected in the digital images).

[0036] As described above, model training is not deter-
ministic and model optimization is a continuous process,
and adding time constraints to the training of a model will
often cause the training to be cut off when the model has not
been optimized. Because hyperparameter tuning for a
machine learning model and training the model using the
hyperparameters is a time and resource intensive process,
cutting off training for a model often occurs long before the
model has been properly optimized. Thus, when a client
specifies some constraint on the generation and training of a
model, the client will often receive a model that is not
properly trained and optimized. The probability of a suffi-

May 15, 2025

ciently accurate model being generated increase as training
time increases, but a cut-off often preempts the model from
reaching this state.

[0037] In various embodiments described herein, tech-
niques for dynamic time-based custom model are utilized to
generate and train a machine learning model in a manner
optimized for a time-based constraint. Specifically, a client
may send, to a cloud-services provider, a training dataset and
an indication of a time-based constraint corresponding to a
time period at which a trained machine learning model will
be returned to the client. For example, a client may specify
that a cloud-service for generating a trained machine learn-
ing model should generate a sufficient machine learning
model (e.g, a machine learning model that will generate
predictions with a sufficient level of accuracy and/or recall)
within a particular time period, such as one hour. In another
example, a client may directly or indirectly send an indica-
tion of computing resources to the cloud service, and the
indication of computing resources will be used to determine
a time period (e.g., a customer pays for a subscription
utilizing up to 20 gigabytes (GB) of computing resources for
generating a machine learning model using hardware that
operates at 5 megabytes (MB) per second, meaning the
model generation shall only be trained for up to a little over
one hour (20,000 MB+5 MB/s+60 min/s=~66 min). In
another example, the client might want a low compute
model that has very fast inference so that it is deployable on
the edge or conversely the client might want a more complex
model that has very high accuracy without any deployment
constraint.

[0038] Once the training dataset is received from the
customer and the time constraint for training the machine
learning model is determined, techniques for dynamic time-
based custom model generation are utilized to generate and
train an optimized machine learning model within the time
constraint. The generation of the model consists of steps of
preprocessing the machine learning model to optimize the
model’s format and then training the machine learning
model in the remaining time. The preprocessing step to
optimize the model’s format consists of several steps which
will prepare the model for optimized training in the training
step, including dynamic determination of a set of hyperpa-
rameters that will dictate the manner in which the machine
learning model is trained. The training will then occur based
on the dynamically determined set of hyperparameters.
[0039] The techniques for dynamic time-based custom
model generation described herein may utilize a number of
steps in sequence and/or in combination. As an initial step,
a client may provide training data to a cloud-based service
configured to generate and train a machine learning model
according to a time-constraint. The trained machine learning
model will be output to the client that provided the original
training data. The training data may include any factors that
are necessary to train the machine learning model and may
include other information. Examples of data objects in the
training data include the training dataset that will be used to
train the model, an indication of a time constraint during
which the model must be trained and generated, in embodi-
ments where the training data includes a number of “ground-
truth” labels, the number of possible classes in the ground-
truth labels, a type or goal of training the model (e.g.,
training for accuracy versus speed of output), etc.

[0040] All of the training data supplied by the client is
utilized by the cloud service to preprocess the data, generate

US 2025/0157210 Al

the machine learning model, and train the machine learning
model in a manner optimized for the time constraint. In
some embodiments, preprocessing the training data includes
generating a subsampling of the training datasets provided
by the customer. The subsampling may be utilized to
decrease the size of the training dataset for optimal training
within the time constraint. For example, a client may pro-
vide thousands of training datasets for training a machine
learning model. However, a time constraint may limit the
number of training datasets that may be used to train the
machine learning model, and the training datasets may be
reduced to a collection of hundreds training datasets. The
subsampling of the training datasets may be based on the
data supplied by the client, for example, a number and size
of training datasets, the number of classes present in ground-
truth labels, etc.

[0041] Additional preprocessing of the training data sup-
plied by the client may be specific to the type of machine
learning model being trained by the cloud service. For
example, a client may specify that a convolutional neural
network (CNN) is to be generated and trained using a
training dataset of digital images supplied by the client. The
digital images will correspond to various “ground-truth”
labels corresponding to true labels of objects depicted in the
digital images. One method for optimization of CNN
machine learning models is anchor optimization, wherein a
set of “anchor” bounding boxes are determined for the
digital images in the training dataset. For example, given a
training dataset of digital images and a set of ground-truth
labels specifying that the digital images contain the label
“car,” the cloud-service may perform anchor optimization of
bounding boxes corresponding to known or predicted shapes
of automobiles across different image capture views to
improve image processing by the CNN. An example of
anchor optimization can be found in the paper “Anchor Box
Optimization for Object Detection” citation: Zhong, Y.,
Wang, J., Peng, J., & Zhang, L. (2020). Anchor box opti-
mization for object detection. In Proceedings of the IEEE/
CVF Winter Conference on Applications of Computer
Vision (pp. 1286-1294). This approach can additionally be
extended by enabling random subsampling for estimation of
the anchors. The references noted above are incorporated by
reference herein, in their entirety.

[0042] Other types of preprocessing for various types of
machine learning models include augmentation, wherein
input images are adjusted to provide variations of the digital
image data for a CNN which enables robustness of the
model to different variations in the input images. For
example, a filter or color mask may be applied to a digital
image, which causes the CNN to more easily recognize
different ranges of pixel values in a digital image. In various
embodiments, the cloud service preprocessing involves
class-specific image augmentation, wherein the cloud ser-
vice will automatically detect a class of a client provided
image and determine a type of augmentation to apply to the
image. In many instances, other types of preprocessing will
transform the training datasets into corresponding data types
which are more easily processed for downstream operations,
such as dynamic hyperparameter tuning.

[0043] Once preprocessing of the training data has con-
cluded, the machine learning model is generated. As
described herein, a machine learning model typically
employs one or more hyperparameters specifying the man-
ner in which the machine learning model will be trained.

May 15, 2025

Examples of hyperparameters include learning rate, momen-
tum, weight decay, and many others. Hyperparameter tuning
is often utilized to optimize hyperparameters for training a
machine learning model using a specific training dataset. In
various embodiments, the tuning of the hyperparameters of
the machine learning model is performed according to the
time constraint specified by the client and in accordance
with the newly subsampled training dataset. In various
embodiments, a subsampling of hyperparameters is also
determined and the subsampling of hyperparameters are
subjected to tuning processes while other hyperparameters
are held constant or removed from the model.

[0044] In various embodiments, the hyperparameters are
generated based on a learning adaptive algorithm e.g. a
mutating genetic annealing algorithm for hyperparameter
tuning and selection. In the pre-processing step, a set of all
hyperparameters to be optimized over is obtained. The
average contributions of each hyperparameter is quantified
using any suitable hyperparameter attribution method such
as sensitivity analysis (e.g. Invalid source specified.). A
ranking of the weighted contributions of each hyperparam-
eter is obtained.

[0045] A mutating genetic algorithm will start with a set of
default hyperparameter values and then tune the hyperpa-
rameters values according to the steps below:

Pre-Processing

[0046] 1. Determine set of all hyperparameters with
significant contributions to the model performance.
[0047] 2. Estimate and rank the contribution of each and
different possible clustering of these hyperparameters

based on a robust dataset.

[0048] 3. Estimate the time taken to conduct hyperpa-
rameter optimization on different subsets of hyperpa-
rameters on datasets of different sizes.

Hyperparameter Optimization

(1) Define the genetic algorithm objective, “fitness

function”, as the accuracy metric of the model.

[0049] (2) Define subset of hyperparameters to be
optimized based on the time estimated as discussed
in the pre-processing steps above.

[0050] (3) Define a performance threshold whereby
the genetic algorithm is stopped or identified as
converged.

[0051] (4) Initiate the genetic algorithm with some
values for its initial hyperparameters where the chro-
mosomes correspond to the specific hyperparam-
eters, the genes correspond to the values these hyper-
parameters are initiated at and the population as the
search space of all possible values.

[0052] (5) Conduct a genetic algorithm as discussed
here: Srinivas, M., & Patnaik, L. M. (1994). Adap-
tive probabilities of crossover and mutation in
genetic algorithms. IEEE Transactions on Systems,
Man, and Cybernetics, 24(4), 656-667 or here:
Mitchell, M. (1998). An introduction to genetic
algorithms. MIT press.

[0053] a. A genetic algorithm emulates the natural
evolution process with iterative random maximi-
zation of the species characteristics.

US 2025/0157210 Al

[0054] b. A genetic algorithm consists of the fol-
lowing:

[0055] i. Generations: The number of iterative
steps the characteristic of the specie is evolved
over.

[0056] ii. Mutation: In each generation, a small

percent of the genes is randomly mutated to
enable diversity and exploration in the solu-
tions.
1. The percentage of mutations can be adapted
to be higher in the beginning of the search
process and progressively lower in the search
process in a progress known as annealing.

[0057] 1iii. The fitness function (deep learning

model accuracy metric) is used in a ‘Selection’
process to determine the candidates of the cur-
rent generation that would be used in building
the next generation.
1. Depending on the custom model, the accu-
racy metric is a weighted sum of different
metrics e.g. for object detection, this can be the
localization metrics at different intersection-
over-union threshold and classification metrics
at different confidence levels.

[0058] iv. The combination of mutation and
selection ensures that not just the fittest mem-
bers of the population are used in creating the
next population but that it includes some diver-
sity as well to avoid local (non-global and
robust) solutions.

[0059] v. Crossover: This is the process whereby
the genetic information of two parents’ chro-
mosomes is combined to generate a new off-
spring.

[0060] vi. The above process is repeated until a
pre-specified optimization goal is met e.g. the
change in the fitness function is below the
convergence threshold set after a number of
generations or prespecified to stop after a num-
ber of generations.

[0061] (6) The number of generations, size of the
convergence threshold, number of hyperparameters,
the range of values of each hyperparameter, the
number of grids the range is divided into, the number
of'epochs the model is expected to run to evaluate the
fitness function etc. are all variables that are adap-
tively adjusted based on the time constraint speci-
fied.

Example publicly available code of base genetic algorithm
is here (https://github.com/ultralytics/yolov5/blob/
6a3ce7cf03etbl 7ibffdeOe68b1a854e80fc3213/train.
py#L608). This may not be adaptive or variably adjusted
based on the time constraint.

[0062] The techniques for dynamic time-based custom
model generation described herein may utilized a modified
genetic algorithm for tuning of a subset of possible hyper-
parameters according to the subsampled training dataset.
During the preprocessing steps above, the subsampling of
training data may be processed to determine one or inputs
for a modified genetic algorithm to determine one or more
hyperparameters values for a generated machine learning
model. For example, the time constraint may be processed to
generate an input for the modified genetic algorithm that will
ensure that the modified genetic algorithm will continue for

May 15, 2025

a specified period of time proportional to the time constraint.
In another example, the training dataset is processed to
determine the number of training data objects in the training
dataset. The number of objects may be used to determine the
number of hyperparameters or the range of the values of the
hyperparameters search over or an initial hyperparameter
value to be input to the modified genetic algorithm (e.g. a
learning rate that may be increased or decrease based on the
size and variance of the training dataset), based on the entire
dataset or a subsampling of the data. In various embodi-
ments, the modified genetic algorithm includes one or more
performance metrics relating to optimal training conditions
for training the machine learning model during a time
constraint. For example, the one or more performance
metrics may relate to an optimal hyperparameter configu-
ration for training the model in a specified period of time,
versus optimal hyperparameter configuration for training a
model in a non-deterministic period of time.

[0063] The modified genetic algorithm may continue to
tune hyperparameters for the machine learning model until
a condition is met, for example a specified tuning time
period expires, a default maximum time period for tuning
expires, or the hyperparameters attain a certain characteristic
(e.g., a rate of training retention) sufficient to train the
machine learning model. The tuned hyperparameters will
then be used to generate a trainable machine learning model
that will be trained and output to the client in subsequent
steps.

[0064] Once the machine learning model is generated
including the dynamic custom tuned model hyperparameters
which is tuned on a subsample of the data, the training
dataset may be used to train the machine learning model
during the remaining time period in the time constraint with
the hyperparameters values learnt. Training may consist of
input of training data objects from the training dataset to the
machine learning model to generate a predicted output label
in a format similar to the ground-truth labels of the training
dataset. The differences between the predicted output of the
machine learning model and the ground truth label are used
to refine the operating parameters of the machine learning
model according to rates and configurations specified in the
tuned hyperparameters.

[0065] Training the machine learning model is performed
in a series of iterations in which the entire subsampled
training dataset is input to the machine learning model until
every training data object has been input to the machine
learning model. Each iteration is performed in a certain
amount of time, which will be referred to herein as a training
“epoch.” The goal of the techniques for dynamic time-based
custom model generation will be to perform as many train-
ing epochs in the training time constrained period as pos-
sible.

[0066] Determination of the time taken for each training
epoch may be performed experimentally following the gen-
eration of untrained machine learning model. For example,
because each training data object in the subsampling of
training data may include different data, different classes of
labels, and different numbers of labels associated with the
item, a training epoch is highly variable. In some embodi-
ments, the initial input of the training dataset to the machine
learning model is a pre-training epoch, during which the
machine learning model will not “learn,” and which is

US 2025/0157210 Al

performed purely to measure the training epoch for calcu-
lating the number of epochs to perform during the remaining
time period.

[0067] Once the number of remaining training epochs is
determined, by example by dividing the remaining time in
the time constrained period by the total time during the first
experimental epoch, the remaining training epochs are per-
formed to train the machine learning model. In various
embodiments, each training data object in the training data-
set in input to the machine learning model in a particular
order during each separate epoch. For example, the intro-
duce variability into the training phase, each sequence of
training data objects in the training dataset is randomly
generated so that the machine learning model does not
experience training bias.

[0068] Once the machine learning model has been trained
sufficiently or the time constraint period elapses, the trained
machine learning model is output, for example to the origi-
nal requested client. In some embodiments, a number of
incidental or downstream actions are possible once the
model has been trained. In some embodiments, the trained
machine learning model is tested using the training dataset
to determine metrics such as the precision and/or recall of
the machine learning model. In some embodiments, the
client may be prompted whether the model should be
retrained or further trained (e.g. using a new subsampling of
the training dataset).

[0069] In one non-representative example of the tech-
niques for dynamic time-based custom model generation
described herein, a client sends, to a cloud service config-
ured for custom model generation, training data including a
training dataset with various digital photographs of cars and
a time constraint of one hour to train the model using the
training dataset. The client also specified that the model to
be created is a CNN machine learning model, which the
client would like to identify cars in digital images once
trained. The cloud service processes the training dataset,
determines a subset of the training dataset which is used for
hyperparameter optimization, and subsamples the training
dataset to generate a modified training dataset. The cloud
service then processes the training dataset and performs
anchor optimization of bounding boxes according to ground-
truth labels of cars found in the modified training dataset.
[0070] The cloud service will further use the custom
specified time constraint and the modified training dataset to
generate input parameters to a modified mutating genetic
algorithm for hyperparameter optimization. The generated
input parameters may specify, for example, the rate at which
the genetic algorithm will mutate and set a secondary time
constraint for tuning of the hyperparameters, for example, 2
minutes. The generated hyperparameters are tuned to train a
machine learning model in the remaining 58 minutes of the
client-specified time constraint in an optimized manner. The
hyperparameters are included in an untrained CNN machine
learning model and the modified training data is compiled in
a format that will be input to the CNN. An initial experi-
mental training epoch is performed using modified training
dataset to determine the time period of the epoch, which
takes 3 minutes. The cloud service determines that 55
minutes remain in the time constraint, and with each epoch
taking 3 minutes to train, 18 additional training epochs
should be performed (leaving one minute in the time con-
straint, as a 19% epoch would exceed the client-specified
hour for training).

May 15, 2025

[0071] The additional 18 training epochs are performed by
randomly sequencing the training data objects in the modi-
fied training dataset prior to each epoch and training the
machine learning model based on differences between pre-
diction outputs and the ground truth values according to the
hyper parameters. The resulting trained machine learning
model is an optimized trained machine learning model that
may be output to the client for use in identifying cars from
an input dataset. In some embodiments, the remaining 1
minute of time may be utilized to test the CNN using
training data objects not included in the modified training
dataset to compile accuracy and recall statistics to present to
the client.

Example Cloud-Based Service Environment

[0072] FIG. 1 is a block diagram of a distributed infra-
structure-as-a service system for facilitating a cloud-based
service accessible to a client according to certain embodi-
ments of the present disclosure. The system 100 depicted in
FIG. 1 comprises systems and devices connected directly or
indirectly to a network 130 to form a cloud-based infra-
structure. Network 130 may be any communicative entity or
medium through which data may be transmitted. For
example, network 130 may be an internet, intranet, cloud-
based network, local area network, hard-line connection,
wireless signal, virtual network, or other medium for net-
worked communication between devices. Various networks
that may be used will be recognized by one having ordinary
skill in the art, and several are also discussed below.
[0073] Network 130 may be communicatively coupled to
client interface 120. Client interface 120 may be an interface
or other software-based service configured to connect a
client device to a network, such as network 130. For
example, as depicted in FIG. 1, client interface 120 is
implemented by client device 110. Client device 110 may be
any type of device operating in any format necessary to
perform the embodiment described herein, and the number
of client devices that may comprise an embodiment is not
limited. In various embodiments, a client device 110 is a
device operable by a client and/or customer to request,
generate, display, and/or interact with a client interface 120.
For example, a client may initiate software programming
instructions to execute an instance of client interface 120
using processing hardware in client device 110.

[0074] Client interface 120 may be a software-based
instance of a graphical user interface (GUI) to be imple-
mented as part of the embodiments described herein. For
example, a client may utilize the client device 110 to operate
client interface 120 to communicate with network 130 and
therefore other components of system 100. In various
embodiments, client interface 120 establishes a connection
with network 130 to facilitate the embodiments described
herein. An example of a client interface is given with respect
to FIGS. 6 and 7 below.

[0075] Network 130 may be further communicatively
coupled to cloud-based services 140. Cloud-based services
140 may be a cloud-based software service implemented
across multiple directly or indirectly linked hardware
devices. For example, as depicted in FIG. 1, cloud-based
services 140 is implemented by server cluster 150. Server
cluster 150 may be any type of server device operating in
any format necessary to perform the embodiment described
herein, and the number of server devices that may comprise
a cluster is not limited. In various embodiments, a server

US 2025/0157210 Al

cluster 150 is a grouping of device operable by a service
provider and/or administrator to store, send, receive, render,
generate, and manage generated data relating to a cloud-
based services 140.

[0076] Server cluster 150 may implement cloud-based
services 140 as a cloud-based program, application, or set of
instructions executing on one or more server devices of
server cluster 150. Cloud-based services 140 may be a set of
services available to a client, such as a client user of client
device 110 implementing client interface 120, and accessible
through network 130. For example, as described herein
cloud-based services 140 may include a cloud-storage and
processing service available to a client in a subscription-
based format through which a user may store data in a
cloud-storage environment. Specifically, a client using client
device 110 may send, using client interface 120, data to
cloud-based services 140 through network 130. The data
may be physically stored at local server devices of server
cluster 150 and made available to a client or other entities
through a web portal made available on network 130.

[0077] As depicted in FIG. 1, cloud-based services 140
includes a custom model service 160 which is a cloud-based
service for generating and training a machine learning model
according to the embodiments described herein. In order to
facilitate interactions with client device 110 through client
interface 120 via network 130, customer model service 160
includes client interaction instructions 161. For example,
client interactions instructions 161 may be a set of instruc-
tions executable by custom model service 160 in order to
receive training data from a client and output a trained model
to the client in response to receiving the training data.
Instructions for generation and training of the machine
learning model may be included in custom model service
160 as executable model creation instructions 162.

[0078] FIG. 2 is a block diagram of an example custom
model service accessible as part of a cloud-based service
according to certain embodiments of the present disclosure.
Specifically, FIG. 2 depicts custom model service 160 and
various components therein which facilitate the model gen-
eration and training embodiments described herein. As
described above, custom model service 160 includes client
interaction instructions 161, which are instructions for inter-
acting with a client, such as a human entity operating client
device 110 via client interface 120. Client interaction
instructions include interfacing instructions 200. Interfacing
instructions 200 may include instructions configured to
receive, generate, or otherwise utilize internet based com-
munications between custom model service 160 and a client.
For example, interfacing instructions 200 may include
instructions indicating communication formats and proto-
cols through which data may be exchanged between custom
model service 160 and a client via a network 130.

[0079] Client interaction instructions 161 further include
data processing instructions 210, which may be instructions
configured to cause processing of data received from the
client. For example, a client may send, to custom model
service 160, a package of training data including data
specifications for generating and training a machine learning
model. For example, a client may utilize client interface 120
to package a set of training data including training datasets,
time constraints, and other specifications for generating and
training a model. Data processing instructions 210 may be
configured to include instructions for processing the training

May 15, 2025

data received from a client to determine how the data will be
routed, including to model creation instructions 162.

[0080] As described above, model creation instructions
162 may be instructions for generating and training a
machine learning model according to training data received
from a client as part of custom model service 160. Model
creation instructions 162 may further include sub-instruc-
tions for generating the machine learning model and training
the machine learning model. For example, model creation
instructions 162 includes preprocessing instructions 220.
Pre-processing instructions may be instructions for utilizing
and manipulating training data that will be used to create a
machine learning model in order to generate a time-opti-
mized machine learning model.

[0081] As depicted in FIG. 2, pre-processing instructions
220 include subsampling instructions 221. Subsampling
instructions 221 may be any instructions which are config-
ured to cause subsampling of a training dataset from a client
to be performed as part of the creation of the time-optimized
machine learning model. In some embodiments, subsam-
pling instructions 221 include instructions relating to calcu-
lation of threshold amounts of training dataset that are
allowed in a training epoch. For example, instructions in
subsampling instructions 221 may specify that a certain
range of sizes that may be contained in a training dataset that
will be used to train a machine learning model. If the training
dataset received it too small, the model will not learn
sufficiently, and the subsampling instructions 221 may cause
the model creation process to terminate or query the client
for additional training datasets. If the training dataset
received is too big (e.g., a set of predetermined rules
specifies that a training epoch using the full training dataset
would be too large for the client-specified time constraint),
subsampling instructions 221 may cause subsampling to be
performed to generate a new modified dataset. Subsampling
may be configured to generate modified distributed training
datasets according to aspects of the training dataset received.
For example, the subsampled training dataset generated
according to subsampling instructions 220 may include an
equal or relative proportion of training data objects corre-
sponding to each class of ground-truth label in the training
dataset.

[0082] Anchor box instructions 222 are instructions relat-
ing to anchor box optimizations when the model created will
be an image processing model, such as a CNN. In this case,
anchor box instructions 222 may be configured to perform
anchor optimization on the CNN prior to training the
machine learning model. For example, one or more hyper-
parameters relating to object-based bounding boxes the aid
in the detection of regions of interest in a digital image may
be determined using anchor optimization and the one or
more hyperparameters may be included in the eventual CNN
machine learning model that is generated to be trained. In
various embodiments, custom model service 160 stores a
number of pre-generated anchor bounding boxes related to
various classes for ground-truth labels. For example, the
service may store a rectangular bounding box related to
automobile shapes as presented in a digital image. These
predetermined anchor boxes may be used to refine the
manner in which a CNN machine learning model will
attempt to prediction instances of entities in the digital
images.

US 2025/0157210 Al

[0083] Pre-processing instructions 220 includes hyperpa-
rameter tuning instructions 223, which may be instructions
executable to generate a set of tuned hyperparameters for a
machine learning model within a deterministic period of
time. In various embodiments, an algorithm, such as a
mutating genetic algorithm will receive pre-processed inputs
relating to factors for hyperparameter tuning, such as a
maximum period of time for tuning the hyperparameters.
Hyperparameter tuning instructions 223 may then cause the
generation of, tuning, and output of hyperparameters for
inclusion in a machine learning model that will be trained
using training instructions 230. More details regarding the
hyperparameter tuning process with be discussed below with
reference to FIG. 4.

[0084] Model creation instructions 162 also include train-
ing instructions 230 which are instructions configured to
cause training of a generated untrained machine learning
model, for example a machine learning model generated as
a result of pre-processing instructions 220. Training instruc-
tions include iteration determination instructions 231. Itera-
tion determination instructions 231 may be instructions
configured such that when the instructions are executed,
they will cause the determination of one training “epoch”
using the hyperparameters of the machine learning model
and a training dataset. Iteration determination instructions
231 may also cause determination of a number of training
epochs that will be possible within a time constrained period
based on a given time constraint and a single experimental
epoch execution. Training instructions 230 also include
iteration instructions 232, which may be instructions con-
figured such that execution of the instructions will cause
further training of a machine learning model using a number
of iterative training epochs until a time constrained period
has elapsed. More details regarding epoch determination and
training are given below, with reference to FIG. 6.

[0085] Training instructions 230 includes testing instruc-
tions 233, which may be a set of instructions configured such
that when they are executed, will cause testing of a trained
machine learning model. Testing of a trained machine learn-
ing model will occur, for example, but inputting a training
or testing dataset into the machine learning model as input
to generate prediction outputs for the input data. The pre-
diction outputs are compared to ground truths associated
with the training dataset to determine a rate of accurate of
the model’s predictions. Thus, testing the newly trained
machine learning model will generate valuable metric-based
insight into the accuracy and recall of the machine learning
model. To avoid situations involving overfitting of the
model, at least some of the datasets input for testing the
machine learning model may be taken from a new source
different than the modified training dataset used to trained
the machine learning model, such as unsampled training
datasets in a client’s originally-sent training data.

Example Machine Learning Model Generation and
Training Processes

[0086] FIG. 3 depicts an example flowchart of a process
for generating a trained custom machine learning model
according to certain embodiments of the present disclosure.
Specifically, FIG. 3 depicts an example flowchart of a
process 300 for generating and training a machine learning
model in response to receiving training data from a client.
Process 300 begins at 310 when training data is received
including one or more training datasets and an indication of

May 15, 2025

a first time period. For example, the training data may be
received by a client utilizing a client interface 120 which
compiles a set of training data, including one or more
training datasets and an indication of a first time period that
will be a time constrained period for creating a machine
learning model. Other factors may also be received as part
of' the training data, for example, factors that will dictate the
tuning of the hyperparameters and a set of processing
hardware that training will be performed on. Examples of a
user interface including these factors are discussed below
with regard to FIG. 6.

[0087] At 320, a modified training dataset and hyperpa-
rameter values for a machine learning model are determined.
Specifically, a cloud service such as custom model service
160 will intake the training data received in step 310 and
determine a modified training dataset and hyperparameter
values for the machine learning model. The modified train-
ing dataset may be generated using a subsampling process
and the hyperparameters may be determined using a deter-
ministic hyperparameter tuning process, both performed as
part of a preprocess for training a machine learning model.
The preprocessing steps, including the determination of the
modified training dataset and the hyperparameter tuning are
discussed below, with reference to FIG. 4.

[0088] At 330, one or more training iterations correspond-
ing to second time periods that total less than the first time
period are determined. As described herein, the first time
period is a time-constrained period corresponding to a
maximum time period for training a machine learning
model. The one or more training iterations corresponding
second time periods determined in 330 are iterations of
training epochs, where each training epoch will take a set
amount of time equivalent to the second time period. Thus,
the total time for each of the second time periods in
summation will be close to, but either less than or equal to
the first time period, as training will not exceed the time-
constrained period.

[0089] At 340, for each training iteration occurring during
the first time period, the machine learning model is trained
using the modified training dataset and the hyperparameter
values determined in 320. Specifically, the machine learning
model utilizing the hyperparameters determined in 320 will
be iteratively trained over the one or more iterations until the
last training iteration is complete. The modified training
dataset determined in 320 will be used in each training
iteration, though in some embodiments, the order of training
data objects in the modified training dataset will change with
each iteration. The training iteration determination and train-
ing periods will be discussed in more detail below, with
respect to FIG. 5.

[0090] At 350, the now-trained machine learning model is
output. The result of 340 concluding for all of the one or
more training iterations will create a trained machine learn-
ing model within the first time period received in 310. The
trained machine learning model may be output, for example,
to a client that originally sent the training data received in
310. In some embodiments, the output trained machine
learning model may be output to a testing subsystem for
testing the machine learning model to determine one or more
metrics regarding the machine learning model’s perfor-
mance. Examples of test-based results of a machine learning
model are described in more detail below, with regard to
FIG. 7.

US 2025/0157210 Al

[0091] FIG. 4 depicts an example flowchart of a pre-
process for generating a trained custom machine learning
model according to certain embodiments of the present
disclosure. Specifically, FIG. 4 depicts an example flowchart
of a process 400 for pre-processing data received from a
client including training data for training a machine learning
model. The steps depicted in FIG. 4 relate to steps for model
generation prior to training the machine learning model. In
this example, a CNN machine learning model is discussed,
though it will be appreciated that any machine learning
model may be utilized as part of these steps with appropriate
modification.

[0092] Process 400 begins at 410 when training data
including one or more training datasets and an indication of
a first time period for training a convolutional neural net-
work (CNN) is received. Step 410 may be similar to step 310
of FIG. 3, in that a client may send the training data to a
cloud service with the expectation that the training data will
be used to train a machine learning model during a first time
period. As shown in FIG. 4, the machine learning model to
be created in a CNN, and the training dataset may then be,
for example a set of digital images including entities
depicted within the digital images, and a set of ground-truth
labels corresponding to the digital images that will be used
to train the machine learning model. The training data
received in 410 thus includes training datasets, as least a
subset of which will be used to train a CNN machine
learning model within the client-specified first time period.

[0093] At 420, subsampling is performed to generate a
modified training dataset for training the CNN. The sub-
sampling may be performed based on factors included in the
training data such as the first time period. For example, a full
training dataset provided by a client is normally used in
non-deterministic training processes where the time period
for training the machine learning model in unbounded. The
full training dataset will not always be used in dynamic
time-based custom model generation, as the full training
dataset would create an epoch that either would exceed the
first time period, or would allow too few training epochs to
be performed, reducing optimal model training procedures.
Thus a subsampling of the client-provided training dataset is
performed to generate a subset of the training dataset that
will be used to train the machine learning model.

[0094] In various embodiments, the subsampling used to
generate the modified training dataset accounts for aspects
of the training dataset and related factors. For example, the
subsampling may be configured to select an equitable dis-
tribution of ground-truth labels of certain classes from the
training data and include the corresponding training data
objects in the modified training dataset. For example, given
a training dataset that includes ground truth labels for
“automobiles,” “traffic lights,” “stop signs,” and “lane mark-
ers” in equal proportions, the subsampling performed may
also select training data objects (e.g., digital images associ-
ated with those ground truth labels) in an equal proportion.
In various embodiments, the size of the modified training
dataset is selected based on an epoch estimation or size
considerations of the training data objects. For example, the
cloud service may impose a range limit on the number of
training data objects in the modified training dataset such
that the training epoch will not be so long as to inefficiently
limit the number of training epochs that may be performed.

May 15, 2025

[0095] At 430, anchor box optimization is performed for
the CNN. As described above, anchor box optimization may
be performed to provide a set of operating parameters and/or
hyperparameters that will be utilized during training of the
machine learning model. For example, given that a training
dataset may include the same labels specified above, bound-
ing box anchors for automobiles, traffic lights, stop signs,
and lane markers may be retrieved from a memory of anchor
bounding boxes and used to assist the model in recognizing
those entities in the digital images included in the training
dataset.

[0096] At 440, the modified dataset is transformed for
input to the CNN. For example, a convolutional neural
network may be configured to accept, as input, data “fea-
tures” which will serve as the initial input values to the
machine learning model. For example, a CNN may not
accept a digital image in a standard viewable format as input
for the machine learning model, but rather will accept a
vectorized set of values corresponding to the digital images.
The transformation will ensure that the digital image data
will be acceptable as input to the machine learning model
during training time and may also assist in hyperparameter
tuning performed at 540.

[0097] At step 450, a set of hyperparameter values are
generated using a mutating genetic algorithm. Specifically, a
set of hyperparameters that will be utilized by the CNN
machine learning model to train the model are generated and
tuned in a deterministic manner. The generation of the set of
hyperparameters may begin with a processing of the training
data, the modified training dataset, the anchor box optimi-
zation results, and/or the modified training dataset referred
to in other steps of process 400. For example, the training
data indicates the first time period and may be used to derive
a maximum time period during which the mutating genetic
algorithm will be employed. The modified training dataset
may be processed to determine aspects of the training data,
such as color density, estimated average number of entities
per training data object, number and type of classes associ-
ated with the training dataset, etc. These aspects may be used
to determine initial values of the hyperparameters prior to
execution of the mutating genetic algorithm or the manner of
operation thereof.

[0098] In some embodiments, the processed data may
indicate a subset of the hyperparameters that will be tuned
using the mutating genetic algorithm. For example, given
the first time period and the size of the modified training
dataset, a subset of hyperparameters of a total set of hyper-
parameters may be selected as best candidates for tuning.
Other unselected hyperparameters may be held static or
tuned sparingly during the operation of the mutating genetic
algorithm. The mutating genetic algorithm itself may be
modified by the processed data. For example, the mutating
genetic algorithm may receive, as operating inputs, a deter-
ministic maximum time period for hyperparameter tuning
and/or setting which determine the scale and frequency of
random mutations to be performed. The result of process
400 will be a set of hyperparameter values that will be used
by a CNN machine learning model to train the machine
learning model in an optimal manner during the remaining
duration of the first time period.

[0099] FIG. 5 depicts an example flowchart of a process
for iteratively training a custom machine learning model
over a time period according to certain embodiments of the
present disclosure. Specifically, FIG. 5 depicts an example

US 2025/0157210 Al

flowchart of a process 500 for training a CNN machine
learning model using a modified training dataset and a set of
tuned hyperparameters. In various embodiments, the train-
ing described with reference to FIG. 5 and process 500 may
follow directly from the preprocessing described with ref-
erence to FIG. 4 and process 400. Process 500 begins at 510
when a modified training dataset and a set of hyperparam-
eters for a convolutional neural network (CNN) are received.
For example, the modified training dataset may be similar to
a modified training dataset generated in 420 of process 400
and the set of hyperparameters may be similar to a set of
hyperparameters generated in 450 of process 400. In various
embodiments, in which an untrained CNN machine learning
model has not been generated prior to 510, an untrained
CNN machine learning model will be built including the set
of hyperparameters.

[0100] At 520, a measured training iteration time period
(epoch) for training the CNN is determined. Specifically, the
modified training dataset received in 510 is input to the CNN
machine learning model as part of a training step of the CNN
machine learning model. The time between the input of the
modified training dataset to the CNN machine learning
model and the modification of the CNN machine learning
model based on the prediction outputs therefrom may be
recorded as the epoch time period. Thus, the epoch is
measured as the time required to train the CNN machine
learning model with the modified training dataset once. In
some embodiments, the modified training dataset is input to
the machine learning model, but the parameters of the
machine learning model are held constant to prevent training
while still allowing for the determination of the epoch time
period.

[0101] At 530, a number of epochs for training the CNN
during a first time period is determined. Specifically, using
the measured time period determined in 520 and the remain-
ing time in the first time period that has not elapsed (e.g.
during preprocessing of the data and the steps performed in
520), a number of additional iterations of the training epoch
that may be performed without exceeding the remainder of
the first time period is calculated. For example, given that a
training epoch as measured in 520 takes 3 minutes to
complete, and given that 55 minutes remain in the first time
period, the number of epochs to training will be given by the
determination 55 min+3 min/epoch=18.33=~18 epochs to run
during the remained of the first time period. The determined
number of epochs will be performed iteratively until the last
epoch has concluded or the first time period elapses.

[0102] At 540, a determination is made as to whether the
final epoch in the number of epochs has been performed.
Specifically, a determination is made as to whether the
training has completed because the last epoch has been
performed (e.g., signifying that the first time period is nearly
elapsed). If the final training epoch has not yet been per-
formed (or if no training has yet occurred as process 500 has
just proceeded from 530), the process 500 moves to 550
where a new arrangement of the modified training dataset is
determined. As described herein, the modified training data-
set is composed of training data objects (e.g. digital images
for the CNN) and ground truth labels (e.g. one or more
classes for a corresponding digital image). To ensure train-
ing during each epoch does not introduce bias into the
model, the sequence in which the training data objects are
input to the machine learning model may be rearranged.

May 15, 2025

[0103] At 560, the CNN is trained using the new arrange-
ment of the modified training dataset and the set of hyper-
parameter values during the current epoch. Training will
included methods for determining an objective function or
difference values between the ground truth label and a
predicted output of the machine learning model for a par-
ticular input training data object. The parameters of the CNN
machine learning model are then modified to better predict
output labels given a similar digital image as input. The
training of all the training data objects in the new arrange-
ment of the modified training dataset will signify the end of
the current training epoch. The process 500 will then return
to 540 to determine if the epoch just executed was the final
training epoch out of the number of training epochs deter-
mined in 530. When the final epoch has been performed as
determined in 540, process 500 then proceeds to 570, where
the trained CNN is output. For example, the now trained
CNN machine learning model can now be sent to a client
that requested the model or subjected to additional testing.

Example Interfaces and Embodiments

[0104] FIG. 6 depicts an example graphical interface and
dashboard for requesting generating of a trained custom
machine learning model according to certain embodiments
of the present disclosure. Specifically, FIG. 6 depicts an
example graphical user interface (GUI) that may be dis-
played by a client interface, such as client interface 120, to
initiate a process for creating a machine learning model,
such as process 300. As depicted in FIG. 6, interface 600
may be an interface including multiple elements that a client
may use to interact with a cloud-based service, such as
cloud-based services 140. Specifically, interface 600 is an
example interface that includes a plurality of prompts and
inputs that will be used to generate training data that will be
used by a cloud service to create a machine learning model.
For example, interface 600 include multiple input fields that
a human client may utilize to generate training data that will
be used to create a machine learning model.

[0105] Interface 600 includes model selector 610. Model
selector 610 may be an interactive element that a client may
use to specify a type of machine learning model that should
be created for the client by the cloud service. For example,
as depicted in FIG. 6, a field corresponding to the prompt
“Select Model” is set to “Object Detection Model (Convo-
Iutional Neural Network),” specifying that the cloud service
should generate a CNN machine learning model for the
client.

[0106] Interface 600 includes training dataset selector 620
and input button 630. Training dataset selector 620 may be
an interactive element that a client may use to specify a
training dataset that should be used to train a machine
learning model. For example, as depicted in FIG. 6, a field
corresponding to the prompt “Training Dataset” is set to
“Parking lot #85612,” which may be, for example, a set of
digital images of automobiles in a particular parking lot that
have been labelled with ground truth data. In the alternative
to selecting a premade training dataset from training dataset
selector 620, a client may instead upload their own training
dataset using input button 630.

[0107] Interface 600 includes time constraint selector 640.
Time constraints selector 640 may be an interactive element
that a client may use to specify a time constrained period
over which a CNN machine learning model should be
created for the client by the cloud service. For example, as

US 2025/0157210 Al

depicted in FIG. 6, a field corresponding to the prompt “Max
Training Duration” is set to “1 Hour,” specifying that the
cloud service should generate a CNN machine learning
model for the client in no more than one hour.

[0108] Interface 600 includes optimization selector 650.
Optimization selector 650 may be an interactive element that
a client may use to specify a goal for training the machine
learning model, for example training the model for optimize
accuracy in predictions versus shorted time to generate
predictions. For example, as depicted in FIG. 6, a field
corresponding to the prompt “Optimize for” is set to “Accu-
racy (Correct Prediction Rate)” specifying that the cloud
service should generate a CNN machine learning model in
an manner that optimizes a model’s ability to predict accu-
racy output labels.

[0109] Interface 600 includes resource selector 660.
Resource selector 660 may be an interactive element that a
client may use to specify a type of processing hardware (e.g.
sometimes based on a subscription-based aspect relating to
the client) for creating the machine learning model. For
example, as depicted in FIG. 6, a field corresponding to the
prompt “Performance Tier” is set to “Gold Tier (Premium
GPU Processing),” specifying that the cloud service should
generate a CNN machine learning model using a GPU
architecture. As described above, different types of comput-
ing resources may process data and/or train a machine
learning model is less time. For example, GPUs are often
optimized for machine learning training due to the specific
architecture utilized by GPU logical circuits. Thus, the same
training may be performed faster on a GPU than a central
processing unit (CPU). The type of hardware may be fac-
tored into the creation of the machine learning model at
runtime (e.g. a GPU is expected to be able to run more
training epochs than a CPU, and the hyperparameters may
be tuned with this expectation in mind.

[0110] Interface 600 includes model generation button
670, which may be an interactive button that a client may
press to begin the process of generating and training a
machine learning model. For example once a client has
entered an input for each of data fields 610-660, model
generation button, which is depicted in FIG. 6 with the text
“BEGIN MODEL GENERATION,” may be pressed to
indicate that the client has entered all data relevant to
generate training data to be sent to the cloud service, and
corresponding data should be packages and sent thereto.
[0111] FIG. 7 depicts an example graphical interface and
dashboard for viewing results of the training of a custom
machine learning model according to certain embodiments
of the present disclosure. Specifically, FIG. 7 depicts an
example GUI that explains results of training a machine
learning model, for example in response to pressing model
generation button 670 in interface 600. Thus, interface 700
may represent an interface visible to a client after the client
has requested the creation of a machine learning model and
after the machine learning model has been generated and
trained during the specified time constrained period.
[0112] Interface 700 as depicted in FIG. 7 includes a set of
results widgets, such as results widget 710. The results
widgets on interface 700 depict aspects of the client input
specifications for the trained machine learning model as well
as training/testing metrics gleaned from the creation of the
machine learning model. For example, a first widget labelled
“Input Parameters™ repeats several specified parameters of
model creation shown in FIG. 6. Another widget labelled

May 15, 2025

“Average Precision” indicates the average precision of the
trained machine learning model after the model has been
tested following training. Another widget labelled “Recall
Percentage” indicates a recall rate of the trained machine
learning model after the model has been tested following
training. Another widget labelled “training details™ includes
a number of tracked metrics gleaned from the training and
testing of the machine learning model, including the number
of epochs run in the specified time period, the average time
take for each epoch to complete, and a ratio of training
dataset utilized versus testing datasets used to test the model.

[0113] In various embodiments, a client may accept a
machine learning model after it has been created or may
specify that further training of the model should be per-
formed. For example, additional widgets labelled “% of
Dataset Used” and “Expected Precision with Additional 1
Hour of Training” should the percentage of the client-
supplied training dataset that was included in the subsam-
pling and an estimated increase in precision of the model
following an additional period of training, respectively. A
client may, for example, press retraining button 720 to cause
retraining of the machine learning model for an additional
hour to further optimize the model. In some embodiments,
a new subsampling of the client-supplied training datasets
will be performed to ensure training on new datasets not
previously used to train the machine learning model. Inter-
face 700 also includes model download button 730, which
the client may interact with to immediately obtain the
trained machine learning model following the end of the
time constrained period.

Example Infrastructure-as-a-Service System

[0114] As noted above, infrastructure as a service (IaaS) is
one particular type of cloud computing. laaS can be con-
figured to provide virtualized computing resources over a
public network (e.g., the Internet). In an IaaS model, a cloud
computing provider can host the infrastructure components
(e.g., servers, storage devices, network nodes (e.g., hard-
ware), deployment software, platform virtualization (e.g., a
hypervisor layer), or the like). In some cases, an laaS
provider may also supply a variety of services to accompany
those infrastructure components (e.g., billing, monitoring,
logging, load balancing and clustering, etc.). Thus, as these
services may be policy-driven, laaS users may be able to
implement policies to drive load balancing to maintain
application availability and performance.

[0115] In some instances, laaS customers may access
resources and services through a wide area network (WAN),
such as the Internet, and can use the cloud provider’s
services to install the remaining elements of an application
stack. For example, the user can log in to the [aaS platform
to create virtual machines (VMs), install operating systems
(OSs) on each VM, deploy middleware such as databases,
create storage buckets for workloads and backups, and even
install enterprise software into that VM. Customers can then
use the provider’s services to perform various functions,
including balancing network traffic, troubleshooting appli-
cation issues, monitoring performance, managing disaster
recovery, etc.

[0116] In most cases, a cloud computing model will
require the participation of a cloud provider. The cloud
provider may, but need not be, a third-party service that
specializes in providing (e.g., offering, renting, selling) [aaS.

US 2025/0157210 Al

An entity might also opt to deploy a private cloud, becoming
its own provider of infrastructure services.

[0117] In some examples, [aaS deployment is the process
of putting a new application, or a new version of an
application, onto a prepared application server or the like. It
may also include the process of preparing the server (e.g.,
installing libraries, daemons, etc.). This is often managed by
the cloud provider, below the hypervisor layer (e.g., the
servers, storage, network hardware, and virtualization).
Thus, the customer may be responsible for handling (OS),
middleware, and/or application deployment (e.g., on self-
service virtual machines (e.g., that can be spun up on
demand) or the like.

[0118] In some examples, laaS provisioning may refer to
acquiring computers or virtual hosts for use, and even
installing needed libraries or services on them. In most
cases, deployment does not include provisioning, and the
provisioning may need to be performed first.

[0119] In some cases, there are two different challenges for
laaS provisioning. First, there is the initial challenge of
provisioning the initial set of infrastructure before anything
is running. Second, there is the challenge of evolving the
existing infrastructure (e.g., adding new services, changing
services, removing services, etc.) once everything has been
provisioned. In some cases, these two challenges may be
addressed by enabling the configuration of the infrastructure
to be defined declaratively. In other words, the infrastructure
(e.g., what components are needed and how they interact)
can be defined by one or more configuration files. Thus, the
overall topology of the infrastructure (e.g., what resources
depend on which, and how they each work together) can be
described declaratively. In some instances, once the topol-
ogy is defined, a workflow can be generated that creates
and/or manages the different components described in the
configuration files.

[0120] In some examples, an infrastructure may have
many interconnected elements. For example, there may be
one or more virtual private clouds (VPCs) (e.g., a potentially
on-demand pool of configurable and/or shared computing
resources), also known as a core network. In some examples,
there may also be one or more inbound/outbound traffic
group rules provisioned to define how the inbound and/or
outbound traffic of the network will be set up and one or
more virtual machines (VMs). Other infrastructure elements
may also be provisioned, such as a load balancer, a database,
or the like. As more and more infrastructure elements are
desired and/or added, the infrastructure may incrementally
evolve.

[0121] In some instances, continuous deployment tech-
niques may be employed to enable deployment of infra-
structure code across various virtual computing environ-
ments. Additionally, the described techniques can enable
infrastructure management within these environments. In
some examples, service teams can write code that is desired
to be deployed to one or more, but often many, different
production environments (e.g., across various different geo-
graphic locations, sometimes spanning the entire world).
However, in some examples, the infrastructure on which the
code will be deployed must first be set up. In some instances,
the provisioning can be done manually, a provisioning tool
may be utilized to provision the resources, and/or deploy-
ment tools may be utilized to deploy the code once the
infrastructure is provisioned.

May 15, 2025

[0122] FIG. 8 is a block diagram 800 illustrating an
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 802 can be communi-
catively coupled to a secure host tenancy 804 that can
include a virtual cloud network (VCN) 806 and a secure host
subnet 808. In some examples, the service operators 802
may be using one or more client computing devices, which
may be portable handheld devices (e.g., an iPhone®, cellular
telephone, an iPad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass®
head mounted display), running software such as Microsoft
Windows Mobile®, and/or a variety of mobile operating
systems such as i0S, Windows Phone, Android, BlackBerry
8, Palm OS, and the like, and being Internet, e-mail, short
message service (SMS), Blackberry®, or other communi-
cation protocol enabled. Alternatively, the client computing
devices can be general purpose personal computers includ-
ing, by way of example, personal computers and/or laptop
computers running various versions of Microsoft Win-
dows®, Apple Macintosh®, and/or Linux operating sys-
tems. The client computing devices can be workstation
computers running any of a variety of commercially-avail-
able UNIX® or UNIX-like operating systems, including
without limitation the variety of GNU/Linux operating sys-
tems, such as for example, Google Chrome OS. Alterna-
tively, or in addition, client computing devices may be any
other electronic device, such as a thin-client computer, an
Internet-enabled gaming system (e.g., a Microsoft Xbox
gaming console with or without a Kinect® gesture input
device), and/or a personal messaging device, capable of
communicating over a network that can access the VCN 806
and/or the Internet.

[0123] The VCN 806 can include a local peering gateway
(LPG) 810 that can be communicatively coupled to a secure
shell (SSH) VCN 812 via an LPG 810 contained in the SSH
VCN 812. The SSH VCN 812 can include an SSH subnet
814, and the SSH VCN 812 can be communicatively
coupled to a control plane VCN 816 via the LPG 810
contained in the control plane VCN 816. Also, the SSH VCN
812 can be communicatively coupled to a data plane VCN
818 via an LPG 810. The control plane VCN 816 and the
data plane VCN 818 can be contained in a service tenancy
819 that can be owned and/or operated by the laaS provider.

[0124] The control plane VCN 816 can include a control
plane demilitarized zone (DMZ) tier 820 that acts as a
perimeter network (e.g., portions of a corporate network
between the corporate intranet and external networks). The
DMZ-based servers may have restricted responsibilities and
help keep breaches contained. Additionally, the DMZ tier
820 can include one or more load balancer (LLB) subnet(s)
822, a control plane app tier 824 that can include app
subnet(s) 826, a control plane data tier 828 that can include
database (DB) subnet(s) 830 (e.g., frontend DB subnet(s)
and/or backend DB subnet(s)). The LB subnet(s) 822 con-
tained in the control plane DMZ tier 820 can be communi-
catively coupled to the app subnet(s) 826 contained in the
control plane app tier 824 and an Internet gateway 834 that
can be contained in the control plane VCN 816, and the app
subnet(s) 826 can be communicatively coupled to the DB
subnet(s) 830 contained in the control plane data tier 828 and
a service gateway 836 and a network address translation
(NAT) gateway 838. The control plane VCN 816 can include
the service gateway 836 and the NAT gateway 838.

US 2025/0157210 Al

[0125] The control plane VCN 816 can include a data
plane mirror app tier 840 that can include app subnet(s) 826.
The app subnet(s) 826 contained in the data plane mirror app
tier 840 can include a virtual network interface controller
(VNIC) 842 that can execute a compute instance 844. The
compute instance 844 can communicatively couple the app
subnet(s) 826 of the data plane mirror app tier 840 to app
subnet(s) 826 that can be contained in a data plane app tier
846.

[0126] The data plane VCN 818 can include the data plane
app tier 846, a data plane DMZ tier 848, and a data plane
data tier 850. The data plane DMZ tier 848 can include LB
subnet(s) 822 that can be communicatively coupled to the
app subnet(s) 826 of the data plane app tier 846 and the
Internet gateway 834 of the data plane VCN 818. The app
subnet(s) 826 can be communicatively coupled to the ser-
vice gateway 836 of the data plane VCN 818 and the NAT
gateway 838 of the data plane VCN 818. The data plane data
tier 850 can also include the DB subnet(s) 830 that can be
communicatively coupled to the app subnet(s) 826 of the
data plane app tier 846.

[0127] The Internet gateway 834 of the control plane VCN
816 and of the data plane VCN 818 can be communicatively
coupled to a metadata management service 852 that can be
communicatively coupled to public Internet 854. Public
Internet 854 can be communicatively coupled to the NAT
gateway 838 of the control plane VCN 816 and of the data
plane VCN 818. The service gateway 836 of the control
plane VCN 816 and of the data plane VCN 818 can be
communicatively couple to cloud services 856.

[0128] In some examples, the service gateway 836 of the
control plane VCN 816 or of the data plane VCN 818 can
make application programming interface (API) calls to
cloud services 856 without going through public Internet
854. The API calls to cloud services 856 from the service
gateway 836 can be one-way: the service gateway 836 can
make AP] calls to cloud services 856, and cloud services 856
can send requested data to the service gateway 836. But,
cloud services 856 may not initiate API calls to the service
gateway 836.

[0129] In some examples, the secure host tenancy 804 can
be directly connected to the service tenancy 819, which may
be otherwise isolated. The secure host subnet 808 can
communicate with the SSH subnet 814 through an LPG 810
that may enable two-way communication over an otherwise
isolated system. Connecting the secure host subnet 808 to
the SSH subnet 814 may give the secure host subnet 808
access to other entities within the service tenancy 819.
[0130] The control plane VCN 816 may allow users of the
service tenancy 819 to set up or otherwise provision desired
resources. Desired resources provisioned in the control
plane VCN 816 may be deployed or otherwise used in the
data plane VCN 818. In some examples, the control plane
VCN 816 can be isolated from the data plane VCN 818, and
the data plane mirror app tier 840 of the control plane VCN
816 can communicate with the data plane app tier 846 of the
data plane VCN 818 via VNICs 842 that can be contained
in the data plane mirror app tier 840 and the data plane app
tier 846.

[0131] In some examples, users of the system, or custom-
ers, can make requests, for example create, read, update, or
delete (CRUD) operations, through public Internet 854 that
can communicate the requests to the metadata management
service 852. The metadata management service 852 can

May 15, 2025

communicate the request to the control plane VCN 816
through the Internet gateway 834. The request can be
received by the LB subnet(s) 822 contained in the control
plane DMZ tier 820. The LB subnet(s) 822 may determine
that the request is valid, and in response to this determina-
tion, the LB subnet(s) 822 can transmit the request to app
subnet(s) 826 contained in the control plane app tier 824. If
the request is validated and requires a call to public Internet
854, the call to public Internet 854 may be transmitted to the
NAT gateway 838 that can make the call to public Internet
854. Memory that may be desired to be stored by the request
can be stored in the DB subnet(s) 830.

[0132] In some examples, the data plane mirror app tier
840 can facilitate direct communication between the control
plane VCN 816 and the data plane VCN 818. For example,
changes, updates, or other suitable modifications to configu-
ration may be desired to be applied to the resources con-
tained in the data plane VCN 818. Via a VNIC 842, the
control plane VCN 816 can directly communicate with, and
can thereby execute the changes, updates, or other suitable
modifications to configuration to, resources contained in the
data plane VCN 818.

[0133] In some embodiments, the control plane VCN 816
and the data plane VCN 818 can be contained in the service
tenancy 819. In this case, the user, or the customer, of the
system may not own or operate either the control plane VCN
816 or the data plane VCN 818. Instead, the IaaS provider
may own or operate the control plane VCN 816 and the data
plane VCN 818, both of which may be contained in the
service tenancy 819. This embodiment can enable isolation
of networks that may prevent users or customers from
interacting with other users’, or other customers’, resources.
Also, this embodiment may allow users or customers of the
system to store databases privately without needing to rely
on public Internet 854, which may not have a desired level
of threat prevention, for storage.

[0134] In other embodiments, the LB subnet(s) 822 con-
tained in the control plane VCN 816 can be configured to
receive a signal from the service gateway 836. In this
embodiment, the control plane VCN 816 and the data plane
VCN 818 may be configured to be called by a customer of
the laaS provider without calling public Internet 854. Cus-
tomers of the laaS provider may desire this embodiment
since database(s) that the customers use may be controlled
by the laaS provider and may be stored on the service
tenancy 819, which may be isolated from public Internet
854.

[0135] FIG. 9 is a block diagram 900 illustrating another
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 902 (e.g., service opera-
tors 802 of FIG. 8) can be communicatively coupled to a
secure host tenancy 904 (e.g., the secure host tenancy 804 of
FIG. 8) that can include a virtual cloud network (VCN) 906
(e.g., the VCN 806 of FIG. 8) and a secure host subnet 908
(e.g., the secure host subnet 808 of FIG. 8). The VCN 906
can include a local peering gateway (LPG) 910 (e.g., the
LPG 810 of FIG. 8) that can be communicatively coupled to
a secure shell (SSH) VCN 912 (e.g., the SSH VCN 812 of
FIG. 8) via an LPG 810 contained in the SSH VCN 912. The
SSH VCN 912 can include an SSH subnet 914 (e.g., the SSH
subnet 814 of FIG. 8), and the SSH VCN 912 can be
communicatively coupled to a control plane VCN 916 (e.g.,
the control plane VCN 816 of FIG. 8) via an LPG 910
contained in the control plane VCN 916. The control plane

US 2025/0157210 Al

VCN 916 can be contained in a service tenancy 919 (e.g., the
service tenancy 819 of FIG. 8), and the data plane VCN 918
(e.g., the data plane VCN 818 of FIG. 8) can be contained
in a customer tenancy 921 that may be owned or operated by
users, or customers, of the system.

[0136] The control plane VCN 916 can include a control
plane DMZ tier 920 (e.g., the control plane DMZ tier 820 of
FIG. 8) that can include LB subnet(s) 922 (e.g., LB subnet(s)
822 of FIG. 8), a control plane app tier 924 (e.g., the control
plane app tier 824 of FIG. 8) that can include app subnet(s)
926 (e.g., app subnet(s) 826 of FIG. 8), a control plane data
tier 928 (e.g., the control plane data tier 828 of FIG. 8) that
can include database (DB) subnet(s) 930 (e.g., similar to DB
subnet(s) 830 of FIG. 8). The LB subnet(s) 922 contained in
the control plane DMZ tier 920 can be communicatively
coupled to the app subnet(s) 926 contained in the control
plane app tier 924 and an Internet gateway 934 (e.g., the
Internet gateway 834 of FIG. 8) that can be contained in the
control plane VCN 916, and the app subnet(s) 926 can be
communicatively coupled to the DB subnet(s) 930 contained
in the control plane data tier 928 and a service gateway 936
(e.g., the service gateway 636 of FIG. 8) and a network
address translation (NAT) gateway 938 (e.g., the NAT
gateway 838 of FIG. 8). The control plane VCN 916 can
include the service gateway 936 and the NAT gateway 938.

[0137] The control plane VCN 916 can include a data
plane mirror app tier 940 (e.g., the data plane mirror app tier
840 of FIG. 8) that can include app subnet(s) 926. The app
subnet(s) 926 contained in the data plane mirror app tier 940
can include a virtual network interface controller (VNIC)
942 (e.g., the VNIC 842 of FIG. 8) that can execute a
compute instance 944 (e.g., similar to the compute instance
844 of FIG. 8). The compute instance 944 can facilitate
communication between the app subnet(s) 926 of the data
plane mirror app tier 940 and the app subnet(s) 926 that can
be contained in a data plane app tier 946 (e.g., the data plane
app tier 846 of FIG. 8) via the VNIC 942 contained in the
data plane mirror app tier 940 and the VNIC 942 contained
in the data plane app tier 946.

[0138] The Internet gateway 934 contained in the control
plane VCN 916 can be communicatively coupled to a
metadata management service 952 (e.g., the metadata man-
agement service 852 of FIG. 8) that can be communicatively
coupled to public Internet 954 (e.g., public Internet 854 of
FIG. 8). Public Internet 954 can be communicatively
coupled to the NAT gateway 938 contained in the control
plane VCN 916. The service gateway 936 contained in the
control plane VCN 916 can be communicatively couple to
cloud services 956 (e.g., cloud services 856 of FIG. 8).

[0139] In some examples, the data plane VCN 918 can be
contained in the customer tenancy 921. In this case, the laaS
provider may provide the control plane VCN 916 for each
customer, and the laaS provider may, for each customer, set
up a unique compute instance 944 that is contained in the
service tenancy 919. Each compute instance 944 may allow
communication between the control plane VCN 916, con-
tained in the service tenancy 919, and the data plane VCN
918 that is contained in the customer tenancy 921. The
compute instance 944 may allow resources, that are provi-
sioned in the control plane VCN 916 that is contained in the
service tenancy 919, to be deployed or otherwise used in the
data plane VCN 918 that is contained in the customer
tenancy 921.

May 15, 2025

[0140] In other examples, the customer of the laaS pro-
vider may have databases that live in the customer tenancy
921. In this example, the control plane VCN 916 can include
the data plane mirror app tier 940 that can include app
subnet(s) 926. The data plane mirror app tier 940 can reside
in the data plane VCN 918, but the data plane mirror app tier
940 may not live in the data plane VCN 918. That is, the data
plane mirror app tier 940 may have access to the customer
tenancy 921, but the data plane mirror app tier 940 may not
exist in the data plane VCN 918 or be owned or operated by
the customer of the laaS provider. The data plane mirror app
tier 940 may be configured to make calls to the data plane
VCN 918 but may not be configured to make calls to any
entity contained in the control plane VCN 916. The cus-
tomer may desire to deploy or otherwise use resources in the
data plane VCN 918 that are provisioned in the control plane
VCN 916, and the data plane mirror app tier 940 can
facilitate the desired deployment, or other usage of
resources, of the customer.

[0141] In some embodiments, the customer of the IaaS
provider can apply filters to the data plane VCN 918. In this
embodiment, the customer can determine what the data
plane VCN 918 can access, and the customer may restrict
access to public Internet 954 from the data plane VCN 918.
The IaaS provider may not be able to apply filters or
otherwise control access of the data plane VCN 918 to any
outside networks or databases. Applying filters and controls
by the customer onto the data plane VCN 918, contained in
the customer tenancy 921, can help isolate the data plane
VCN 918 from other customers and from public Internet
954.

[0142] In some embodiments, cloud services 956 can be
called by the service gateway 936 to access services that
may not exist on public Internet 954, on the control plane
VCN 916, or on the data plane VCN 918. The connection
between cloud services 956 and the control plane VCN 916
or the data plane VCN 918 may not be live or continuous.
Cloud services 956 may exist on a different network owned
or operated by the laaS provider. Cloud services 956 may be
configured to receive calls from the service gateway 936 and
may be configured to not receive calls from public Internet
954. Some cloud services 956 may be isolated from other
cloud services 956, and the control plane VCN 916 may be
isolated from cloud services 956 that may not be in the same
region as the control plane VCN 916. For example, the
control plane VCN 916 may be located in “Region 1,” and
cloud service “Deployment 8,” may be located in Region 1
and in “Region 2.” If a call to Deployment 8 is made by the
service gateway 936 contained in the control plane VCN 916
located in Region 1, the call may be transmitted to Deploy-
ment 8 in Region 1. In this example, the control plane VCN
916, or Deployment 8 in Region 1, may not be communi-
catively coupled to, or otherwise in communication with,
Deployment 8 in Region 2.

[0143] FIG. 10 is a block diagram 1000 illustrating
another example pattern of an IaaS architecture, according to
at least one embodiment. Service operators 1002 (e.g.,
service operators 802 of FIG. 8) can be communicatively
coupled to a secure host tenancy 1004 (e.g., the secure host
tenancy 804 of FIG. 8) that can include a virtual cloud
network (VCN) 1006 (e.g., the VCN 806 of FIG. 8) and a
secure host subnet 1008 (e.g., the secure host subnet 808 of
FIG. 8). The VCN 1006 can include an LPG 1010 (e.g., the
LPG 810 of FIG. 8) that can be communicatively coupled to

US 2025/0157210 Al

an SSH VCN 1012 (e.g., the SSH VCN 812 of FIG. 8) via
an LPG 1010 contained in the SSH VCN 1012. The SSH
VCN 1012 can include an SSH subnet 1014 (e.g., the SSH
subnet 814 of FIG. 8), and the SSH VCN 1012 can be
communicatively coupled to a control plane VCN 1016
(e.g., the control plane VCN 816 of FIG. 8) viaan LPG 1010
contained in the control plane VCN 1016 and to a data plane
VCN 1018 (e.g., the data plane 818 of FIG. 8) via an LPG
1010 contained in the data plane VCN 1018. The control
plane VCN 1016 and the data plane VCN 1018 can be
contained in a service tenancy 1019 (e.g., the service ten-
ancy 819 of FIG. 8).

[0144] The control plane VCN 1016 can include a control
plane DMZ tier 1020 (e.g., the control plane DMZ tier 820
of FIG. 8) that can include load balancer (LB) subnet(s)
1022 (e.g., LB subnet(s) 822 of FIG. 8), a control plane app
tier 1024 (e.g., the control plane app tier 824 of FIG. 8) that
can include app subnet(s) 1026 (e.g., similar to app subnet(s)
826 of FIG. 8), a control plane data tier 1028 (e.g., the
control plane data tier 828 of FIG. 8) that can include DB
subnet(s) 1030. The LB subnet(s) 1022 contained in the
control plane DMZ tier 1020 can be communicatively
coupled to the app subnet(s) 1026 contained in the control
plane app tier 1024 and to an Internet gateway 1034 (e.g., the
Internet gateway 834 of FIG. 8) that can be contained in the
control plane VCN 1016, and the app subnet(s) 1026 can be
communicatively coupled to the DB subnet(s) 1030 con-
tained in the control plane data tier 1028 and to a service
gateway 1036 (e.g., the service gateway 836 of FIG. 8) and
a network address translation (NAT) gateway 1038 (e.g., the
NAT gateway 838 of FIG. 8). The control plane VCN 1016
can include the service gateway 1036 and the NAT gateway
1038.

[0145] The data plane VCN 1018 can include a data plane
app tier 1046 (e.g., the data plane app tier 846 of FIG. 8), a
data plane DMZ tier 1048 (e.g., the data plane DMZ tier 848
of FIG. 8), and a data plane data tier 1050 (e.g., the data
plane data tier 850 of FIG. 8). The data plane DMZ tier 1048
can include LB subnet(s) 1022 that can be communicatively
coupled to trusted app subnet(s) 1060 and untrusted app
subnet(s) 1062 of the data plane app tier 1046 and the
Internet gateway 1034 contained in the data plane VCN
1018. The trusted app subnet(s) 1060 can be communica-
tively coupled to the service gateway 1036 contained in the
data plane VCN 1018, the NAT gateway 1038 contained in
the data plane VCN 1018, and DB subnet(s) 1030 contained
in the data plane data tier 1050. The untrusted app subnet(s)
1062 can be communicatively coupled to the service gate-
way 1036 contained in the data plane VCN 1018 and DB
subnet(s) 1030 contained in the data plane data tier 1050.
The data plane data tier 1050 can include DB subnet(s) 1030
that can be communicatively coupled to the service gateway
1036 contained in the data plane VCN 1018.

[0146] The untrusted app subnet(s) 1062 can include one
or more primary VNICs 1064(1)-(N) that can be communi-
catively coupled to tenant virtual machines (VMs) 1066(1)-
(N). Each tenant VM 1066(1)-(N) can be communicatively
coupled to a respective app subnet 1067(1)-(N) that can be
contained in respective container egress VCNs 1068(1)-(N)
that can be contained in respective customer tenancies
1070(1)-(N). Respective secondary VNICs 1072(1)-(N) can
facilitate communication between the untrusted app subnet
(s) 1062 contained in the data plane VCN 1018 and the app
subnet contained in the container egress VCNs 1068(1)-(N).

May 15, 2025

Each container egress VCNs 1068(1)-(N) can include a NAT
gateway 1038 that can be communicatively coupled to
public Internet 1054 (e.g., public Internet 854 of FIG. 8).
[0147] The Internet gateway 1034 contained in the control
plane VCN 1016 and contained in the data plane VCN 1018
can be communicatively coupled to a metadata management
service 1052 (e.g., the metadata management system 852 of
FIG. 8) that can be communicatively coupled to public
Internet 1054. Public Internet 1054 can be communicatively
coupled to the NAT gateway 1038 contained in the control
plane VCN 1016 and contained in the data plane VCN 1018.
The service gateway 1036 contained in the control plane
VCN 1016 and contained in the data plane VCN 1018 can
be communicatively couple to cloud services 1056.

[0148] In some embodiments, the data plane VCN 1018
can be integrated with customer tenancies 1070. This inte-
gration can be useful or desirable for customers of the laaS
provider in some cases such as a case that may desire
support when executing code. The customer may provide
code to run that may be destructive, may communicate with
other customer resources, or may otherwise cause undesir-
able effects. In response to this, the IaaS provider may
determine whether to run code given to the laaS provider by
the customer.

[0149] In some examples, the customer of the laaS pro-
vider may grant temporary network access to the IaaS
provider and request a function to be attached to the data
plane app tier 1046. Code to run the function may be
executed in the VMs 1066(1)-(N), and the code may not be
configured to run anywhere else on the data plane VCN
1018. Each VM 1066(1)-(N) may be connected to one
customer tenancy 1070. Respective containers 1071(1)-(N)
contained in the VMs 1066(1)-(N) may be configured to run
the code. In this case, there can be a dual isolation (e.g., the
containers 1071(1)-(N) running code, where the containers
1071(1)-(N) may be contained in at least the VM 1066(1)-
(N) that are contained in the untrusted app subnet(s) 1062),
which may help prevent incorrect or otherwise undesirable
code from damaging the network of the laaS provider or
from damaging a network of a different customer. The
containers 1071(1)-(N) may be communicatively coupled to
the customer tenancy 1070 and may be configured to trans-
mit or receive data from the customer tenancy 1070. The
containers 1071(1)-(N) may not be configured to transmit or
receive data from any other entity in the data plane VCN
1018. Upon completion of running the code, the laaS
provider may kill or otherwise dispose of the containers
1071(1)-(N).

[0150] In some embodiments, the trusted app subnet(s)
1060 may run code that may be owned or operated by the
IaaS provider. In this embodiment, the trusted app subnet(s)
1060 may be communicatively coupled to the DB subnet(s)
1030 and be configured to execute CRUD operations in the
DB subnet(s) 1030. The untrusted app subnet(s) 1062 may
be communicatively coupled to the DB subnet(s) 1030, but
in this embodiment, the untrusted app subnet(s) may be
configured to execute read operations in the DB subnet(s)
1030. The containers 1071(1)-(N) that can be contained in
the VM 1066(1)-(N) of each customer and that may run code
from the customer may not be communicatively coupled
with the DB subnet(s) 1030.

[0151] Inother embodiments, the control plane VCN 1016
and the data plane VCN 1018 may not be directly commu-
nicatively coupled. In this embodiment, there may be no

US 2025/0157210 Al

direct communication between the control plane VCN 1016
and the data plane VCN 1018. However, communication can
occur indirectly through at least one method. An LPG 1010
may be established by the IaaS provider that can facilitate
communication between the control plane VCN 1016 and
the data plane VCN 1018. In another example, the control
plane VCN 1016 or the data plane VCN 1018 can make a
call to cloud services 1056 via the service gateway 1036. For
example, a call to cloud services 1056 from the control plane
VCN 1016 can include a request for a service that can
communicate with the data plane VCN 1018.

[0152] FIG. 11 is a block diagram 1100 illustrating another
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 1102 (e.g., service
operators 802 of FIG. 8) can be communicatively coupled to
a secure host tenancy 1104 (e.g., the secure host tenancy 804
of FIG. 8) that can include a virtual cloud network (VCN)
1106 (e.g., the VCN 806 of FIG. 8) and a secure host subnet
1108 (e.g., the secure host subnet 808 of FIG. 8). The VCN
1106 can include an LPG 1110 (e.g., the LPG 810 of FIG. 8)
that can be communicatively coupled to an SSH VCN 1112
(e.g., the SSH VCN 812 of FIG. 8) via an LPG 1110
contained in the SSH VCN 1112. The SSH VCN 1112 can
include an SSH subnet 1114 (e.g., the SSH subnet 814 of
FIG. 8), and the SSH VCN 1112 can be communicatively
coupled to a control plane VCN 1116 (e.g., the control plane
VCN 816 of FIG. 8) via an LPG 1110 contained in the
control plane VCN 1116 and to a data plane VCN 1118 (e.g.,
the data plane 818 of FIG. 8) via an LPG 1110 contained in
the data plane VCN 1118. The control plane VCN 1116 and
the data plane VCN 1118 can be contained in a service
tenancy 1119 (e.g., the service tenancy 819 of FIG. 8).

[0153] The control plane VCN 1116 can include a control
plane DMZ tier 1120 (e.g., the control plane DMZ tier 820
of FIG. 8) that can include LB subnet(s) 1122 (e.g., LB
subnet(s) 822 of FIG. 8), a control plane app tier 1124 (e.g.,
the control plane app tier 824 of FIG. 8) that can include app
subnet(s) 1126 (e.g., app subnet(s) 826 of FIG. 8), a control
plane data tier 1128 (e.g., the control plane data tier 828 of
FIG. 8) that can include DB subnet(s) 1130 (e.g., DB
subnet(s) 1030 of FIG. 10). The LB subnet(s) 1122 con-
tained in the control plane DMZ tier 1120 can be commu-
nicatively coupled to the app subnet(s) 1126 contained in the
control plane app tier 1124 and to an Internet gateway 1134
(e.g., the Internet gateway 834 of FIG. 8) that can be
contained in the control plane VCN 1116, and the app
subnet(s) 1126 can be communicatively coupled to the DB
subnet(s) 1130 contained in the control plane data tier 1128
and to a service gateway 1136 (e.g., the service gateway of
FIG. 8) and a network address translation (NAT) gateway
1138 (e.g., the NAT gateway 838 of FIG. 8). The control
plane VCN 1116 can include the service gateway 1136 and
the NAT gateway 1138.

[0154] The data plane VCN 1118 can include a data plane
app tier 1146 (e.g., the data plane app tier 846 of FIG. 8), a
data plane DMZ tier 1148 (e.g., the data plane DMZ tier 848
of FIG. 8), and a data plane data tier 1150 (e.g., the data
plane data tier 850 of FIG. 8). The data plane DMZ tier 1148
can include LB subnet(s) 1122 that can be communicatively
coupled to trusted app subnet(s) 1160 (e.g., trusted app
subnet(s) 1060 of FIG. 10) and untrusted app subnet(s) 1162
(e.g., untrusted app subnet(s) 1062 of FIG. 10) of the data
plane app tier 1146 and the Internet gateway 1134 contained
in the data plane VCN 1118. The trusted app subnet(s) 1160

May 15, 2025

can be communicatively coupled to the service gateway
1136 contained in the data plane VCN 1118, the NAT
gateway 1138 contained in the data plane VCN 1118, and
DB subnet(s) 1130 contained in the data plane data tier 1150.
The untrusted app subnet(s) 1162 can be communicatively
coupled to the service gateway 1136 contained in the data
plane VCN 1118 and DB subnet(s) 1130 contained in the
data plane data tier 1150. The data plane data tier 1150 can
include DB subnet(s) 1130 that can be communicatively
coupled to the service gateway 1136 contained in the data
plane VCN 1118.

[0155] The untrusted app subnet(s) 1162 can include pri-
mary VNICs 1164(1)-(N) that can be communicatively
coupled to tenant virtual machines (VMs) 1166(1)-(N) resid-
ing within the untrusted app subnet(s) 1162. Each tenant VM
1166(1)-(N) can run code in a respective container 1167(1)-
(N), and be communicatively coupled to an app subnet 1126
that can be contained in a data plane app tier 1146 that can
be contained in a container egress VCN 1168. Respective
secondary VNICs 1172(1)-(N) can facilitate communication
between the untrusted app subnet(s) 1162 contained in the
data plane VCN 1118 and the app subnet contained in the
container egress VCN 1168. The container egress VCN can
include a NAT gateway 1138 that can be communicatively
coupled to public Internet 1154 (e.g., public Internet 854 of
FIG. 8).

[0156] The Internet gateway 1134 contained in the control
plane VCN 1116 and contained in the data plane VCN 1118
can be communicatively coupled to a metadata management
service 1152 (e.g., the metadata management system 852 of
FIG. 8) that can be communicatively coupled to public
Internet 1154. Public Internet 1154 can be communicatively
coupled to the NAT gateway 1138 contained in the control
plane VCN 1116 and contained in the data plane VCN 1118.
The service gateway 1136 contained in the control plane
VCN 1116 and contained in the data plane VCN 1118 can be
communicatively couple to cloud services 1156.

[0157] In some examples, the pattern illustrated by the
architecture of block diagram 1100 of FIG. 11 may be
considered an exception to the pattern illustrated by the
architecture of block diagram 1000 of FIG. 10 and may be
desirable for a customer of the laaS provider if the laaS
provider cannot directly communicate with the customer
(e.g., a disconnected region). The respective containers
1167(1)-(N) that are contained in the VMs 1166(1)-(N) for
each customer can be accessed in real-time by the customer.
The containers 1167(1)-(N) may be configured to make calls
to respective secondary VNICs 1172(1)-(N) contained in
app subnet(s) 1126 of the data plane app tier 1146 that can
be contained in the container egress VCN 1168. The sec-
ondary VNICs 1172(1)-(N) can transmit the calls to the NAT
gateway 1138 that may transmit the calls to public Internet
1154. In this example, the containers 1167(1)-(N) that can be
accessed in real-time by the customer can be isolated from
the control plane VCN 1116 and can be isolated from other
entities contained in the data plane VCN 1118. The contain-
ers 1167(1)-(N) may also be isolated from resources from
other customers.

[0158] In other examples, the customer can use the con-
tainers 1167(1)-(N) to call cloud services 1156. In this
example, the customer may run code in the containers
1167(1)-(N) that requests a service from cloud services
1156. The containers 1167(1)-(N) can transmit this request
to the secondary VNICs 1172(1)-(N) that can transmit the

US 2025/0157210 Al

request to the NAT gateway that can transmit the request to
public Internet 1154. Public Internet 1154 can transmit the
request to LB subnet(s) 1122 contained in the control plane
VCN 1116 via the Internet gateway 1134. In response to
determining the request is valid, the LB subnet(s) can
transmit the request to app subnet(s) 1126 that can transmit
the request to cloud services 1156 via the service gateway
1136.

[0159] It should be appreciated that IaaS architectures
800, 900, 1000, 1100 depicted in the figures may have other
components than those depicted. Further, the embodiments
shown in the figures are only some examples of a cloud
infrastructure system that may incorporate an embodiment
of the disclosure. In some other embodiments, the IaaS
systems may have more or fewer components than shown in
the figures, may combine two or more components, or may
have a different configuration or arrangement of compo-
nents.

[0160] In certain embodiments, the IaaS systems
described herein may include a suite of applications, middle-
ware, and database service offerings that are delivered to a
customer in a self-service, subscription-based, elastically
scalable, reliable, highly available, and secure manner. An
example of such an laaS system is the Oracle Cloud Infra-
structure (OCI) provided by the present assignee.

[0161] FIG. 12 illustrates an example computer system
1200, in which various embodiments may be implemented.
The system 1200 may be used to implement any of the
computer systems described above. As shown in the figure,
computer system 1200 includes a processing unit 1204 that
communicates with a number of peripheral subsystems via
a bus subsystem 1202. These peripheral subsystems may
include a processing acceleration unit 1206, an /O subsys-
tem 1208, a storage subsystem 1218 and a communications
subsystem 1224. Storage subsystem 1218 includes tangible
computer-readable storage media 1222 and a system
memory 1210.

[0162] Bus subsystem 1202 provides a mechanism for
letting the various components and subsystems of computer
system 1200 communicate with each other as intended.
Although bus subsystem 1202 is shown schematically as a
single bus, alternative embodiments of the bus subsystem
may utilize multiple buses. Bus subsystem 1202 may be any
of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such
architectures may include an Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus, which can be implemented as a
Mezzanine bus manufactured to the IEEE P1386.1 standard.

[0163] Processing unit 1204, which can be implemented
as one or more integrated circuits (e.g., a conventional
microprocessor or microcontroller), controls the operation
of computer system 1200. One or more processors may be
included in processing unit 1204. These processors may
include single core or multicore processors. In certain
embodiments, processing unit 1204 may be implemented as
one or more independent processing units 1232 and/or 1234
with single or multicore processors included in each pro-
cessing unit. In other embodiments, processing unit 1204

May 15, 2025

may also be implemented as a quad-core processing unit
formed by integrating two dual-core processors into a single
chip.

[0164] In various embodiments, processing unit 1204 can
execute a variety of programs in response to program code
and can maintain multiple concurrently executing programs
or processes. At any given time, some or all of the program
code to be executed can be resident in processor(s) 1204
and/or in storage subsystem 1218. Through suitable pro-
gramming, processor(s) 1204 can provide various function-
alities described above. Computer system 1200 may addi-
tionally include a processing acceleration unit 1206, which
can include a digital signal processor (DSP), a special-
purpose processor, and/or the like.

[0165] I/O subsystem 1208 may include user interface
input devices and user interface output devices. User inter-
face input devices may include a keyboard, pointing devices
such as a mouse or trackball, a touchpad or touch screen
incorporated into a display, a scroll wheel, a click wheel, a
dial, a button, a switch, a keypad, audio input devices with
voice command recognition systems, microphones, and
other types of input devices. User interface input devices
may include, for example, motion sensing and/or gesture
recognition devices such as the Microsoft Kinect® motion
sensor that enables users to control and interact with an input
device, such as the Microsoft Xbox® 360 game controller,
through a natural user interface using gestures and spoken
commands. User interface input devices may also include
eye gesture recognition devices such as the Google Glass®
blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users
and transforms the eye gestures as input into an input device
(e.g., Google Glass®). Additionally, user interface input
devices may include voice recognition sensing devices that
enable users to interact with voice recognition systems (e.g.,
Siri® navigator), through voice commands.

[0166] User interface input devices may also include,
without limitation, three dimensional (3D) mice, joysticks or
pointing sticks, gamepads and graphic tablets, and audio/
visual devices such as speakers, digital cameras, digital
camcorders, portable media players, webcams, image scan-
ners, fingerprint scanners, barcode reader 3D scanners, 3D
printers, laser rangefinders, and eye gaze tracking devices.
Additionally, user interface input devices may include, for
example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission
tomography, medical ultrasonography devices. User inter-
face input devices may also include, for example, audio
input devices such as MIDI keyboards, digital musical
instruments and the like.

[0167] User interface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that
using a liquid crystal display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “output device” is intended to include all
possible types of devices and mechanisms for outputting
information from computer system 1200 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information

US 2025/0157210 Al

such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

[0168] Computer system 1200 may comprise a storage
subsystem 1218 that comprises software elements, shown as
being currently located within a system memory 1210.
System memory 1210 may store program instructions that
are loadable and executable on processing unit 1204, as well
as data generated during the execution of these programs.

[0169] Depending on the configuration and type of com-
puter system 1200, system memory 1210 may be volatile
(such as random access memory (RAM)) and/or non-volatile
(such as read-only memory (ROM), flash memory, etc.) The
RAM typically contains data and/or program modules that
are immediately accessible to and/or presently being oper-
ated and executed by processing unit 1204. In some imple-
mentations, system memory 1210 may include multiple
different types of memory, such as static random access
memory (SRAM) or dynamic random access memory
(DRAM). In some implementations, a basic input/output
system (BIOS), containing the basic routines that help to
transfer information between elements within computer sys-
tem 1200, such as during start-up, may typically be stored in
the ROM. By way of example, and not limitation, system
memory 1210 also illustrates application programs 1212,
which may include client applications, Web browsers, mid-
tier applications, relational database management systems
(RDBMYS), etc., program data 1214, and an operating system
1216. By way of example, operating system 1216 may
include various versions of Microsoft Windows®, Apple
Macintosh®, and/or Linux operating systems, a variety of
commercially-available UNIX® or UNIX-like operating
systems (including without limitation the variety of GNU/
Linux operating systems, the Google Chrome® OS, and the
like) and/or mobile operating systems such as iOS, Win-
dows® Phone, Android® OS, BlackBerry® OS, and Palm®
OS operating systems.

[0170] Storage subsystem 1218 may also provide a tan-
gible computer-readable storage medium for storing the
basic programming and data constructs that provide the
functionality of some embodiments. Software (programs,
code modules, instructions) that when executed by a pro-
cessor provide the functionality described above may be
stored in storage subsystem 1218. These software modules
or instructions may be executed by processing unit 1204.
Storage subsystem 1218 may also provide a repository for
storing data used in accordance with the present disclosure.
[0171] Storage subsystem 1200 may also include a com-
puter-readable storage media reader 1220 that can further be
connected to computer-readable storage media 1222.
Together and, optionally, in combination with system
memory 1210, computer-readable storage media 1222 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporar-
ily and/or more permanently containing, storing, transmit-
ting, and retrieving computer-readable information.

[0172] Computer-readable storage media 1222 containing
code, or portions of code, can also include any appropriate
media known or used in the art, including storage media and
communication media, such as but not limited to, volatile
and non-volatile, removable and non-removable media
implemented in any method or technology for storage and/or
transmission of information. This can include tangible com-
puter-readable storage media such as RAM, ROM, elec-

May 15, 2025

tronically erasable programmable ROM (EEPROM), flash
memory or other memory technology, CD-ROM, digital
versatile disk (DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or other tangible computer read-
able media. This can also include nontangible computer-
readable media, such as data signals, data transmissions, or
any other medium which can be used to transmit the desired
information and which can be accessed by computing sys-
tem 1200.

[0173] By way of example, computer-readable storage
media 1222 may include a hard disk drive that reads from or
writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive that reads from or writes to a removable,
nonvolatile magnetic disk, and an optical disk drive that
reads from or writes to a removable, nonvolatile optical disk
such as a CD ROM, DVD, and Blu-Ray® disk, or other
optical media. Computer-readable storage media 1222 may
include, but is not limited to, Zip® drives, flash memory
cards, universal serial bus (USB) flash drives, secure digital
(SD) cards, DVD disks, digital video tape, and the like.
Computer-readable storage media 1222 may also include,
solid-state drives (SSD) based on non-volatile memory such
as flash-memory based SSDs, enterprise flash drives, solid
state ROM, and the like, SSDs based on volatile memory
such as solid state RAM, dynamic RAM, static RAM,
DRAM-based SSDs, magnetoresistive RAM (MRAM)
SSDs, and hybrid SSDs that use a combination of DRAM
and flash memory based SSDs. The disk drives and their
associated computer-readable media may provide non-vola-
tile storage of computer-readable instructions, data struc-
tures, program modules, and other data for computer system
1200.

[0174] Communications subsystem 1224 provides an
interface to other computer systems and networks. Commu-
nications subsystem 1224 serves as an interface for receiv-
ing data from and transmitting data to other systems from
computer system 1200. For example, communications sub-
system 1224 may enable computer system 1200 to connect
to one or more devices via the Internet. In some embodi-
ments communications subsystem 1224 can include radio
frequency (RF) transceiver components for accessing wire-
less voice and/or data networks (e.g., using cellular tele-
phone technology, advanced data network technology, such
as 3G, 4G or EDGE (enhanced data rates for global evolu-
tion), WiFi (IEEE 802.11 family standards, or other mobile
communication technologies, or any combination thereof),
global positioning system (GPS) receiver components, and/
or other components. In some embodiments communica-
tions subsystem 1224 can provide wired network connec-
tivity (e.g., Ethernet) in addition to or instead of a wireless
interface.

[0175] Insome embodiments, communications subsystem
1224 may also receive input communication in the form of
structured and/or unstructured data feeds 1226, event
streams 1228, event updates 1230, and the like on behalf of
one or more users who may use computer system 1200.
[0176] By way of example, communications subsystem
1224 may be configured to receive data feeds 1226 in
real-time from users of social networks and/or other com-
munication services such as Twitter® feeds, Facebook®
updates, web feeds such as Rich Site Summary (RSS) feeds,
and/or real-time updates from one or more third party
information sources.

US 2025/0157210 Al

[0177] Additionally, communications subsystem 1224
may also be configured to receive data in the form of
continuous data streams, which may include event streams
1228 of real-time events and/or event updates 1230, that
may be continuous or unbounded in nature with no explicit
end. Examples of applications that generate continuous data
may include, for example, sensor data applications, financial
tickers, network performance measuring tools (e.g., network
monitoring and traffic management applications), click-
stream analysis tools, automobile traffic monitoring, and the
like.

[0178] Communications subsystem 1224 may also be con-
figured to output the structured and/or unstructured data
feeds 1226, event streams 1228, event updates 1230, and the
like to one or more databases that may be in communication
with one or more streaming data source computers coupled
to computer system 1200.

[0179] Computer system 1200 can be one of various types,
including a handheld portable device (e.g., an iPhone®
cellular phone, an iPad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted
display), a PC, a workstation, a mainframe, a kiosk, a server
rack, or any other data processing system.

[0180] Due to the ever-changing nature of computers and
networks, the description of computer system 1200 depicted
in the figure is intended only as a specific example. Many
other configurations having more or fewer components than
the system depicted in the figure are possible. For example,
customized hardware might also be used and/or particular
elements might be implemented in hardware, firmware,
software (including applets), or a combination. Further,
connection to other computing devices, such as network
input/output devices, may be employed. Based on the dis-
closure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to
implement the various embodiments.

[0181] Although specific embodiments have been
described, various modifications, alterations, alternative
constructions, and equivalents are also encompassed within
the scope of the disclosure. Embodiments are not restricted
to operation within certain specific data processing environ-
ments, but are free to operate within a plurality of data
processing environments. Additionally, although embodi-
ments have been described using a particular series of
transactions and steps, it should be apparent to those skilled
in the art that the scope of the present disclosure is not
limited to the described series of transactions and steps.
Various features and aspects of the above-described embodi-
ments may be used individually or jointly.

[0182] Further, while embodiments have been described
using a particular combination of hardware and software, it
should be recognized that other combinations of hardware
and software are also within the scope of the present
disclosure. Embodiments may be implemented only in hard-
ware, or only in software, or using combinations thereof.
The various processes described herein can be implemented
on the same processor or different processors in any com-
bination. Accordingly, where components or modules are
described as being configured to perform certain operations,
such configuration can be accomplished, e.g., by designing
electronic circuits to perform the operation, by programming
programmable electronic circuits (such as microprocessors)
to perform the operation, or any combination thereof. Pro-
cesses can communicate using a variety of techniques

May 15, 2025

including but not limited to conventional techniques for inter
process communication, and different pairs of processes
may use different techniques, or the same pair of processes
may use different techniques at different times.

[0183] The specification and drawings are, accordingly, to
be regarded in an illustrative rather than a restrictive sense.
It will, however, be evident that additions, subtractions,
deletions, and other modifications and changes may be made
thereunto without departing from the broader spirit and
scope as set forth in the claims. Thus, although specific
disclosure embodiments have been described, these are not
intended to be limiting. Various modifications and equiva-
lents are within the scope of the following claims.

[0184] The use of the terms “a” and “an” and “the” and
similar referents in the context of describing the disclosed
embodiments (especially in the context of the following
claims) are to be construed to cover both the singular and the
plural, unless otherwise indicated herein or clearly contra-
dicted by context. The terms “comprising,” “having,”
“including,” and “containing” are to be construed as open-
ended terms (i.e., meaning “including, but not limited to,”)
unless otherwise noted. The term “connected” is to be
construed as partly or wholly contained within, attached to,
or joined together, even if there is something intervening.
Recitation of ranges of values herein are merely intended to
serve as a shorthand method of referring individually to each
separate value falling within the range, unless otherwise
indicated herein and each separate value is incorporated into
the specification as if it were individually recited herein. All
methods described herein can be performed in any suitable
order unless otherwise indicated herein or otherwise clearly
contradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, is
intended merely to better illuminate embodiments and does
not pose a limitation on the scope of the disclosure unless
otherwise claimed. No language in the specification should
be construed as indicating any non-claimed element as
essential to the practice of the disclosure.

[0185] Disjunctive language such as the phrase “at least
one of X, Y, or Z,” unless specifically stated otherwise, is
intended to be understood within the context as used in
general to present that an item, term, etc., may be either X,
Y, or Z, or any combination thereof (e.g., X, Y, and/or Z).
Thus, such disjunctive language is not generally intended to,
and should not, imply that certain embodiments require at
least one of X, at least one of Y, or at least one of Z to each
be present.

[0186] Preferred embodiments of this disclosure are
described herein, including the best mode known for carry-
ing out the disclosure. Variations of those preferred embodi-
ments may become apparent to those of ordinary skill in the
art upon reading the foregoing description. Those of ordi-
nary skill should be able to employ such variations as
appropriate and the disclosure may be practiced otherwise
than as specifically described herein. Accordingly, this dis-
closure includes all modifications and equivalents of the
subject matter recited in the claims appended hereto as
permitted by applicable law. Moreover, any combination of
the above-described elements in all possible variations
thereof is encompassed by the disclosure unless otherwise
indicated herein.

[0187] All references, including publications, patent appli-
cations, and patents, cited herein are hereby incorporated by
reference to the same extent as if each reference were

US 2025/0157210 Al

individually and specifically indicated to be incorporated by
reference and were set forth in its entirety herein.
[0188] In the foregoing specification, aspects of the dis-
closure are described with reference to specific embodi-
ments thereof, but those skilled in the art will recognize that
the disclosure is not limited thereto. Various features and
aspects of the above-described disclosure may be used
individually or jointly. Further, embodiments can be utilized
in any number of environments and applications beyond
those described herein without departing from the broader
spirit and scope of the specification. The specification and
drawings are, accordingly, to be regarded as illustrative
rather than restrictive.
What is claimed is:
1. A method, comprising:
receiving, by a computing device, training data, the train-
ing data comprising one or more training datasets and
an indication of a first time period;
determining, by the computing device and based at least
in part on the training data, a modified training dataset
and one or more hyperparameter values for a machine
learning model, wherein determining the one or more
hyperparameter values for the machine learning model
comprises:
determining, by the computing device, a set of hyper-
parameters for training the machine learning model;
selecting, by the computing device and based at least in
part on the first time period, a subset of hyperpa-
rameters of the set of hyperparameters; and
generating, by the computing device and during a
second time period that is less than the first time
period, the one or more hyperparameter values based
at least in part on the subset of hyperparameters;
determining, by the computing device and based at least
in part on the modified training dataset and the first time
period, one or more training iterations, each training
iteration of the one or more training iterations corre-
sponding to the second time period and the one or more
training iterations corresponding to a total time period
that is less than or equal to the first time period;
for each training iteration in the one or more training
iterations, training, by the computing device, the
machine learning model using the one or more hyper-
parameter values and the modified training dataset; and
outputting, by a computing device, the trained machine
learning model.
2. The method of claim 1, wherein:
the training data is received from a client device commu-
nicatively coupled to the computing device; and
the computing device outputs the trained machine learn-
ing model to the client device in response to receiving
the training data.
3. The method of claim 1, wherein:
the trained machine learning model is a convolutional
neural network machine learning model configured to
receive input data including one or more digital images
and output, based at least in part on the input data, one
or more predictions associated with the one or more
digital images;
the one or more training datasets comprise one or more
first digital images; and
the modified training dataset comprises one or more
second digital images that are a subset of the one or
more first digital images.

May 15, 2025

4. The method of claim 1, wherein determining the
modified training dataset comprises determining, by the
computing device, a subset of the one or more training
datasets based at least in part on one or more features of the
training data and generating the modified training dataset
including the subset of the one or more training datasets.

5. The method of claim 1, wherein the one or more
hyperparameter values are generated using a mutating
genetic algorithm.

6. The method of claim 1, wherein determining the one or
more training iterations comprises:

performing, by the computing device, an initial training of

the machine learning model using the one or more
hyperparameter values and the modified training data-
set;
determining, by the computing device, an initial time
period corresponding to the initial training; and

determining, by the computing device, a number of initial
time periods that, in summation, are less than or equal
time to the first time period.

7. The method of claim 1, wherein:

the modified training dataset includes a plurality of data

objects that are input to the machine learning model to
cause training the machine learning model; and

the modified training dataset includes the plurality of data

objects in a unique sequence.

8. The method of claim 1, wherein:

the computing device comprises a processing infrastruc-

ture of a processing type: and

determining the modified training dataset, the one or more

hyperparameter values, and the one or more training
iterations is further based at least in part on the pro-
cessing type of the computing device.

9. The method of claim 1, further comprising:

comparing, by the computing device, a number of data

objects in the one or more training datasets to an object
threshold; and

determining, by the computing device, that the number of

data objects in the one or more training datasets
exceeds the object threshold, wherein determining the
modified training dataset comprises including a number
of data objects from the one or more training datasets
in the modified training dataset that is less than or equal
to the object threshold.

10. The method of claim 1, further comprising:

generating, by the computing device and using the one or

more training datasets, one or more testing metrics for
the trained machine learning model; and

outputting the one or more testing metrics.

11. A system comprising:

one or more data processors; and

a memory configured to store instructions that, when

executed by the one or more data processors, cause the

one or more data processors to perform:

receiving training data comprising one or more training
datasets and an indication of a first time period;

determining, based at least in part on the training data,
a modified training dataset and one or more hyper-
parameter values for a machine learning model,
wherein determining the one or more hyperparam-
eter values for the machine learning model com-
prises:
determining a set of hyperparameters for training the

machine learning model;

US 2025/0157210 Al

selecting, based at least in part on the first time
period, a subset of hyperparameters of the set of
hyperparameters; and
generating, during a second time period that is less
than the first time period, the one or more hyper-
parameter values based at least in part on the
subset of hyperparameters;
determining, based at least in part on the modified
training dataset and the first time period, one or more
training iterations, each training iteration of the one
or more training iterations corresponding to a second
time period and the one or more training iterations
corresponding to a total time period that is less than
or equal to the first time period;
for each training iteration in the one or more training
iterations, training the machine learning model using
the one or more hyperparameter values and the
modified training dataset; and
outputting the trained machine learning model.

12. The system of claim 11, wherein:

the training data is received from a client device commu-

nicatively coupled to the computing device; and

the computing device outputs the trained machine learn-

ing model to the client device in response to receiving
the training data.

13. The system of claim 11, wherein:

the trained machine learning model is a convolutional

neural network machine learning model configured to
receive input data including one or more digital images
and output, based at least in part on the input data, one
or more predictions associated with the one or more
digital images;

the one or more training datasets comprise one or more

first digital images; and

the modified training dataset comprises one or more

second digital images that are a subset of the one or
more first digital images.

14. The system of claim 11, wherein determining the
modified training dataset comprises determining, by the
computing device, a subset of the one or more training
datasets based at least in part on one or more features of the
training data and generating the modified training dataset
including the subset of the one or more training datasets.

15. The system of claim 11, wherein the one or more
hyperparameter values are generated using a mutating
genetic algorithm.

16. The system of claim 11, wherein determining the one
or more training iterations comprises:

performing, by the computing device, an initial training of

the machine learning model using the one or more
hyperparameter values and the modified training data-
set;
determining, by the computing device, an initial time
period corresponding to the initial training; and

determining, by the computing device, a number of initial
time periods that, in summation, are less than or equal
time to the first time period.

17. The system of claim 11, wherein:

the modified training dataset includes a plurality of data

objects that are input to the machine learning model to
cause training the machine learning model; and

21

May 15, 2025

the modified training dataset includes the plurality of data

objects in a unique sequence.

18. The system of claim 11, wherein:

the system further comprises a processing device of a

processing type: and

determining the modified training dataset, the one or more

hyperparameter values, and the one or more training
iterations is further based at least in part on the pro-
cessing type of the processing device.

19. A non-transitory computer-readable storage medium
storing a plurality of instructions executable by one or more
processors of a computer, the plurality of instructions when
executed by the one or more processors cause the one or
more processors to perform:

receiving, by a computing device, training data, the train-

ing data comprising one or more training datasets and
an indication of a first time period;
determining, by the computing device and based at least
in part on the training data, a modified training dataset
and one or more hyperparameter values for a machine
learning model, wherein determining the one or more
hyperparameter values for the machine learning model
comprises:
determining a set of hyperparameters for training the
machine learning model;
selecting, based at least in part on the first time period,
a subset of hyperparameters of the set of hyperpa-
rameters; and
generating, during a second time period that is less than
the first time period, the one or more hyperparameter
values based at least in part on the subset of hyper-
parameters;
determining, by the computing device and based at least
in part on the modified training dataset and the first time
period, one or more training iterations, each training
iteration of the one or more training iterations corre-
sponding to a second time period and the one or more
training iterations corresponding to a total time period
that is less than or equal to the first time period;
for each training iteration in the one or more training
iterations, training, by the computing device, the
machine learning model using the one or more hyper-
parameter values and the modified training dataset; and

outputting, by a computing device, the trained machine
learning model.

20. The non-transitory computer-readable storage
medium storing a plurality of instructions of claim 19, the
one or more processors further performing:

comparing, by the computing device, a number of data

objects in the one or more training datasets to an object
threshold; and

determining, by the computing device, that the number of

data objects in the one or more training datasets
exceeds the object threshold, wherein determining the
modified training dataset comprises including a number
of data objects from the one or more training datasets
in the modified training dataset that is less than or equal
to the object threshold.

#* #* #* #* #*

